PRL 116, 163602 (2016)

PHYSICAL REVIEW LETTERS

week ending
22 APRIL 2016

Macroscopic Quantum Superposition in Cavity Optomechanics

Jie-Qiao Liao and Lin Tian'
School of Natural Sciences, University of California, Merced, California 95343, USA
(Received 23 August 2015; published 19 April 2016)

Quantum superposition in mechanical systems is not only key evidence for macroscopic quantum
coherence, but can also be utilized in modern quantum technology. Here we propose an efficient approach
for creating macroscopically distinct mechanical superposition states in a two-mode optomechanical
system. Photon hopping between the two cavity modes is modulated sinusoidally. The modulated photon
tunneling enables an ultrastrong radiation-pressure force acting on the mechanical resonator, and hence
significantly increases the mechanical displacement induced by a single photon. We study systematically
the generation of the Yurke-Stoler-like states in the presence of system dissipations. We also discuss the

experimental implementation of this scheme.
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Introduction.—Quantum superposition [1] is at the heart
of quantum theory and is often considered a signature to
distinguish the quantum from the classical world. To date,
quantum superposition has been observed in various
physical systems [2], such as electronic [3-5], photonic
[6-9], and atomic or molecular systems [10,11], ranging
from microscopic systems to mesoscopic devices.
Nevertheless, it would be desirable to observe quantum
superposition in macroscopic mechanical systems with up
to 10'° atoms [12]. It can help us understand the funda-
mentals of quantum theory [I3], such as quantum
decoherence and quantum-classical boundary in the pres-
ence of gravity [14], and has wide applications in quantum
information processing with continuous variables [9].

Recent advances in microfabrication provide the pos-
sibility of producing high-Q mechanical resonators [15].
This progress paves the way for observing and utilizing
quantum effects in macrosized mechanical systems
[16-23]. Great efforts have been devoted to controlling
the mechanical motion in optomechanics [24-26] and
nanomechanics [27,28]. However, it remains a challenge
to generate macroscopically distinct superposition states
[29] in mechanical resonators [30-39]. Decoherence by
quantum and thermal fluctuations can often destroy such
superposition. Moreover, the natural mechanical displace-
ment induced by a single photon in optomechanical
systems is proportional to the ratio of the coupling rate
to the mechanical frequency [32], go/wy [cf. Eq. (1)],
which is of the order of 10~°—1072 in realistic systems [26].
To distinguish the single-photon mechanical displacement
from its zero-point fluctuation, the ultrastrong coupling
condition gy > w,, needs to be satisfied [32].

In this Letter, we propose an efficient approach for
creating superposition of large-amplitude coherent states in
a two-mode optomechanical system by introducing a
sinusoidally modulated photon hopping between the
two cavities. This modulated photon tunneling induces a
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near-resonant radiation-pressure force acting on the
mechanical resonator, with an effective detuning much
smaller than the original mechanical frequency, and hence
increases the mechanical displacement generated by a
single photon. One merit of this method is that the fidelities
of the generated mechanical states are not affected by the
decay of cavity photons. This feature enables the possibility
to observe distinct mechanical superposition states in
practical systems.

System.—Consider a two-mode optomechanical system
that consists of a free (left) cavity coupled to an opto-
mechanical (right) cavity via a modulated photon-hopping
interaction. The system is described by the Hamiltonian
(h=1)

A

H(t) = a)c(a};&L + a;&R) — &y COS(wot)(&Z&R + a;&L)

+wyb'h — goagar(b+b'). (1)

where a gy and b are the annihilation operators of the left
(right) cavity mode and the mechanical mode, with
resonant frequencies w, and w,,, respectively. The param-
eter @, is the modulation frequency and ¢ is the dimen-
sionless modulation amplitude of photon hopping between
the two cavities. g, is the magnitude of the single-photon
optomechanical coupling between the right cavity and the
mechanical mode. Similar two-mode optomechanical sys-
tems have been proposed for studying quantum optics and
quantum information missions [40—44].

In arotating frame defined by the transformation operator
wyb'b]ty and  V,(r) = exp[i&sin(wot) (@] ag + ahay )],
and under the condition |5, gg/2 < @y, w,;, We can obtain
an effective Hamiltonian by the rotating-wave approxima-
tion (RWA) as [45]

A

Hypwa(t) = 9(&25% - &;&R)(i’e_m + BT@W)- (2)
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Here, g = goJ2n,(2£)/2 is the normalized coupling constant
under a selected integer ny and 6 = wy; — 2nyw, is a
modulation-induced detuning, where J,(z) is the Bessel
function of the first kind, and n, corresponds to the near-
resonance term in the Jacobi-Anger expansions of the
sinusoidal factor in V,(z).

The Hamiltonian Eq. (2) describes a driven harmonic
oscillator with an effective driving force g((a} 4, — ajag))
on a mechanical quadrature that rotates at a frequency 6.
Under this form, the maximum mechanical displacement
induced by a single photon is 2¢g/|8|, which, by choosing
proper £ and J, could be much larger than the displacement
2go/wy [32] in the single-cavity case. The resonance
driving effect can be seen more clearly by introducing
the symmetric and asymmetric modes of the two cavities
[45]: a,. = (a; £ ag)//2. In the representation of &, the
frequencies of modes a; are modulated by periodic
functions with frequency @y, and hence the Floquet side-
band modes (with frequencies w. + mw, for integers m)
will assist the transitions of the system. As a result, we can
choose a proper w, such that the conditional displacement
process becomes resonant or near resonant and other
processes are far off resonant. The physical picture can
also be understood in the time domain [45]. By hopping a
single photon into and out of the right cavity at the proper
time, the mechanical effect of the single photon will be
amplified because the displacement effect can be accumu-
lated when the driving force and the mechanical oscillation
are in phase. At the same time, modulation sidebands are
designed to suppress other parametric processes, and hence
an enhanced radiation-pressure interaction can be obtained.

Generation of Yurke-Stoler-like states.—To generate
mechanical superposition states, we consider an initial
state |y(0)) = - (11),10) +[0),1)4)[0) . where |n =
0,1)) are cavity-field Fock states and |0)), is the
mechanical ground state prepared via ground state cooling
[20-22]. Applying the propagator associated with Hgw (7)
on this initial state, followed by the transformation 7'(r), we
derive the state

i9

2

e

(1) = —= [ 010)rleL () +10) V) rlor(1)ml. (3)

5

where 9(1) = —(w. — ¢*/8)t — (¢*/8%) sin(5t) is a global
phase  factor.  The two  states |y (1)) =
cos(/ 2By + i5in(u/2)| = BNy and o1y —
(l¢L(2))p)]pes—p are Yurke-Stoler-like states [58], which
are quantum superposition of coherent states | & (1)),
where f(t) = [—2igsin(6t/2)/8e~@n=/2)t and pu(t) =
2¢sin(wgt). For the resonant case 6§ =0, we have
Pres(t) = —igtexp(—iwyt). Equation (3) describes a
three-mode entangled state that involves two cavity modes
and a mechanical mode. To generate mechanical super-
position states @, (g (1)), we need to measure the states of
the cavity field.
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FIG. 1. (a) The maximum amplitude |f|,. Vs 8/go at & =

1.5271 and 4.9847, which correspond to the peak values of the
Bessel function J, (2£), as shown in the inset. (b) Time dependence
of sin(67/2) and tan[u(r)/2] near the positions that give the large
oscillation amplitude and the equal probability superposition
in states | (g) (1)) y» Where @y /6 = 80, ny = 1, and £ = 1.527.

The maximum coherent amplitude, |3|,.. = 2g/6, is
controllable by tuning the two parameters £ and @, based
on the relations g = goJ,,,(2£)/2 and & = @y — 2nyw,.
We choose proper n, and optimal £ to reach peak values of
the Bessel function Jy, (2£), and tune the modulation
frequency @ such that the value of 6 can be changed
continuously. In Fig. 1(a), we plot |« as a function of §
when the first two peak values of J,(2¢&) (with ny = 1) are
taken (inset). A macroscopically distinct coherent ampli-
tude can always be obtained by choosing 6 < 2¢ such that
|Blmax > 1 and then |(—f|B)| < 1. In this case, the two
coherent states become approximately distinguishable in
phase space by proper quadrature measurements [58,59].

The amplitude || = (29/6)|sin(6¢/2)| reaches its
maximum values at times 1, = (2m+ 1)z/5 [ie.,
sin(6t,,/2) = £1]1  for  non-negative integers  m.
Meanwhile, the relative probability amplitudes of the states
|¢L(r)()) ) depend on the time through u(7). To observe
strong evidence of quantum interference, one expects that
the two components | & f(¢)),, appear with comparable
probabilities. This leads to u(z,) = 2&sin(wgz,) ~ (n +
1/2)x [i.e., tan[u(z,)/2] ~ 1] for non-negative integers
n. Near a given value of ¢,,, there are many 7, satisfying the
probability requirement because of @y > d. Hence, we can
choose proper time windows 7, such that |$(z,)| > 1. In
Fig. 1(b), we plot the function sin(6¢/2) and show the
function tan[u(r)/2] around the time #, = /5 (inset). We
can see that around f, there are many values of time
satisfying the two requirements at the same time. In addition,
the timing period of the measurement is slower than the
periodic oscillation of the mechanical mode because of
wo ~ wy, /2. In realistic experiments, one can turn off the
photon hopping at the detection time ¢, (the photon detection
time, one of 7, around ¢,), then the evolution of the system
can be approximated as a free evolution because the bare
optomechanical coupling strength g, is much smaller than
wyy. As a result, a wider time window can be obtained for
implementing proper measurements for the cavities and the
mechanical mode.

The above analyses show a trade-off between the
displacement amplitude ||« = 29/6 and the state
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generation time 7y = z/5. We pursue a large |f|,.. for
macroscopic superposition and a small ¢, for reducing the
impact of the dissipations. In realistic simulations, we
should choose a proper § such that ||, satisfies the
requirement of macroscopicity and ¢, is as small as
possible. It is also worth mentioning that the detection
time can be shortened by utilizing the upslope rather than
the peak of the amplitude function |sin(67/2)| with a
smaller 6. For example, to obtain a displacement of
|Blmax = 2, the time for the resonant case 6 =0 is
tres = 2/g, which is shorter than ¢, = z/g for the case
0 =g [45].

Effects of dissipations.—To study the environmental
fluctuation effects on the state generation scheme, we
numerically simulate the state generation in the open
system case, in which the evolution of our system is
governed by the quantum master equation [45]:

+ym(ng + D)DB)p + yynaDbp,  (4)

where D[o)p =0po' — (070 p+poT0)/2 is the standard
Lindblad superoperator for photon and phonon dampings,
7. and y,, are the damping rates of the cavity fields and the
mechanical mode, respectively, and ny is the thermal
phonon occupation number. We numerically solve the
master equation and calculate the reduced density matrix

)( 1) [pM (1)] of the mechanical mode [45], the proba-
b111ty Py (r)(t) of the photon in the left (right) cavity, and the
fidelity Fy_p ) (1) = 3 (0 ()]25 (1), (1)) between the
generated mechanical states and the target states.

In Fig. 2(a), we show the time dependence of the
probability P; (7) at selected values of the cavity-field
decay rate y.. Note that Pk () has a similar pattern to P, (¢)
except for a slight oscillation [hereafter, we display only
P, () and F;(t) for concision]. We see that P; (¢) has an
approximate exponential decay envelope with the corre-
sponding y. and slight oscillations. We also show the
probabilities P; (¢,) and P(z,) at time 7, as a function of y .
(inset). The curves indicate that Py g)(t;) decreases with
the increase of y.. About the fidelity, our numerical results
show that the fidelities F;(7) and Fy(r) have a similar
pattern, and that the fidelities are independent of the decay
rate y.., as shown in both the dynamics [Fig. 2(b)] and the
fidelity at time t; (inset). Here the negligible difference
between F (t;) = 0.943 and F(7;) = 0.939 is caused by
the RWA, and it will disappear gradually with the increase
of wy;/ go. In the presence of photon dissipation, the photon
could leak out of the cavities before the measurement.
However, the normalization of the density matrices after the
measurement ensures that in the selected experiments the
photon remains in the cavities. Hence, the fidelity of the
generated state is not affected by photon decay.

To evaluate the quantum coherence and interference
effects in the generated superposition states pj(w)(td) and
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FIG. 2. (a) The probability P, (¢) and (b) the fidelity F (¢) vs 6¢
at selected values of the cavity-field decay rate y.. Insets: The
probability Py g (t,) and the fidelity F; g)(t,) at time 7, versus
Ye/Go- () The Wigner function W, () (with # =7, + in;) and
(d) the probability distribution of the rotated quadrature operator
P;[X(8y)] for the state pM (td) Other parameters are
wy/go =20, ng =1, & = 1.5271, 8 = g, yu1/go = 0.0001, and
ny = 4.
pﬁf)(td) we examine the Wigner function W_r g (n) =
2Te[D ()l (ta)D(n) (=1)P'?]  [601,  where ~ D(y) =
exp(r]bT -7 b) is the displacement operator. It can be
seen from the relation [@g(24))y = (9L (t4))1)|pes—p that
the Wigner function Wg(5) should be a rotation of W (1)
by z about the origin in phase space. We perform the
simulations with the parameters in Fig. 2 and find that there
is also a negligible difference between W () and the z-
rotated W, (). The difference disappears gradually with
the increase of wy/gy. We also find that the Wigner
functions are independent of the cavity-field decay rate,
in accordance with the fidelities. In Fig. 2(c) we display the
Wigner function W, (5) of the state ﬁ,%)(td). We see
obvious interference evidence in this Wigner function.
The quantum superposition properties can also be
seen in the probability distribution P, )[X(0)] =
u(X(© )| (td)|X (0)),, of the rotated quadrature operator
x(e) (be‘“‘) +b7e)/V2 [61], where |X(0))y, is the
eigenstate of X(0): X(0)|X(0)), = X(6)|X(6)),,. In
Fig. 2(d), we plot the probability distributions P [X(6y)]
and Py[X(6,)] as functions of X(6,). Here the rotation
angle is chosen as 6, = arg|f(z,)] — z/2, which means that
the quadrature direction is perpendicular to the link line
between the locations of the two superposed coherent
amplitudes. The interference is maximum in this direction
because the two coherent states are projected onto the
quadrature such that they overlap exactly. The oscillation in
the curves is a distinct evidence of the quantum interference
between the superposition components. We notice that
P;[X(6y)] and Pg[X(6y)] are approximately symmetric to
each other about the vertical axis X(6;) =0, in
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FIG. 3. The fidelity F;(¢) vs &t at selected values of (a) the

mechanical decay rate y, /g, and (b) the thermal phonon
occupation number ny,. Insets: The fidelity F; g (z,) at time 7,
vs 7/ 9o and ny. The probability distribution of the rotated
quadrature operator P;[X(6,)] of the state ﬁ,(é)(td) at selected
values of (¢) yy/go and (d) ng. Other parameters are
oy/g0 =20, ng =1, =15271, 6§ =g, and y./gy = 0.2.

accordance with the negligible difference between F (1)
and Fg(1).

We also investigate the influence of mechanical noise on
the state generation. Our numerical simulations verify that
the probabilities P; (¢) and P(¢) are independent of y,, and
ng. On the contrary, the mechanical dissipations affect the
fidelities F; (¢) and Fg(t). In Figs. 3(a) and 3(b), we show
the dynamics of the fidelity F; (¢) at selected values of y,
and ny,, respectively. We can see F (¢) becomes worse for
larger values of y,, and ny,. In addition, the fidelities F; (,)
and Fg(t,) at time 7, decrease with the increase of y,, and
ng, (insets). In Figs. 3(c) and 3(d), we plot the probability
distribution P;[X(6)] for the state P\’ (;) with the
parameters in Figs. 3(a) and 3(b), respectively [we can
know Pg[X(0,)] from the approximate symmetry between
P;[X(6y)] and Pgr[X(0y)]]. Here we can see that the
oscillatory feature of P; [X(0,)] disappears gradually with
the increase of y,, and ny. These results imply that
mechanical dissipations will destroy the quantum coher-
ence and interference effects in the generated mechanical
superposition. In our simulations, quantum interference
evidence can be seen, and good fidelities (> 0.9) can be
obtained.

Discussions.—Our state generation approach is general
and it can be principally implemented in various opto-
mechanical setups. Below, we focus our discussion on
electromechanical systems with cavities in the microwave
regime. For such systems, the photon hopping between
superconducting resonators can be realized via Josephson
junction coupling [62]. The initial Bell state of the cavity
fields can be prepared by a superconducting qubit, as
realized in circuit-QED systems [63,64]. In particular, a

nonperfect photon loading (i.e., containing the zero-photon
component) does not affect the fidelity but decreases the
success probability of the generated mechanical states
because all the couplings will be frozen when there are
no photons in the two cavities. The photon states in the
superconducting resonators can be measured via super-
conducting quits [65]. In addition, the generated mechani-
cal superposition states can be measured by the technique
of quantum state reconstruction [66—68]. We use another
cavity mode (in the same resonator) to build a connection
between the mechanical mode and the output field. By
detecting the quadrature of the output field, we can obtain
the information of the mechanical states [45].

The parameter conditions for implementation of this
scheme are g, < w,, the ratio gy/y. should be moderately
larger than 1 for a high success probability (for example,
9o/7. = 510 corresponds to the success probability 0.08—
0.285), and ny, < go/(4myy). Below, we analyze the
conditions in detail [45]. (i) For state generation purposes,
we choose 6 < 2g < wy,, then the RWA condition can be
simplified as gy < wy;, which is consistence with the
current experimental situation [26]: go/w,, is of the order
of 1075-1073. (ii) The photon decay does not affect the
fidelity, but it affects the probability by P =~ e=*7</% at
8 = g. Currently, the value of g,/y, is 1074~1072 [25]. This
value can be increased by either increasing g, or decreasing
7.. In electromechanical systems, y. = 2z x 170 kHz [69]
and y, = 2z x 118 kHz [70] have been reported. The value
of y. can be further decreased to be dozens of kilohertz
[71]. The largest value of g, reported in electromechanics is
27 x 460 Hz [69], and theoretic estimations indicate that it
can reach megahertz by utilizing the nonlinearity in
Josephson junction [72,73]. Therefore, gy/y. > 5 should
be accessible in the near future. In particular, in the resonant
case 6 = 0 and at || ,,,x = 1. the success probability can be
improved to be P ~ e~*</%, which takes P = 0.14-0.45
for gg/y. = 2-5. (iii) The thermal phonon number ng,
should be small such that the state generation time is much
shorter than the characteristic coherence time of the
phonons, i.e., t;~4x/gy < 1/(yyng), which leads to
ng < go/ (4myy). Currently, the ratio go/yy is 10'-10?
[26] (this value can be increased to 10* when gy, is increased
as described above). In a low-temperature environment,
ng < 30 can be obtained. For example, at 7 = 10 mK [70],
we have ny =20 at wy =2z x 10 MHz. Therefore,
the condition ny < go/(4myy) can be satisfied in
electromechanics. Based on the above discussions, we
suggest the parameters to be .= 2z x (5-10) GHz,
Ye = 27 x (25-200) kHz, @y =27 x 10 MHz, y,, = 27X
(50-500) Hz, and gy, = 27 x 500 kHz, which are consis-
tent with the values used in our simulations [45].

Conclusions.—We have proposed an efficient method for
creating macroscopically distinct superposition states in a
mechanical resonator. This method is based on the intro-
duction of a modulated photon-hopping interaction in a
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two-mode optomechanical system to produce large effec-
tive single-photon optomechanical coupling. Numerical
simulations demonstrate that our method works well in
the presence of dissipations and can be realized in a wide
parameter range.
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