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Quantum superposition in mechanical systems is not only key evidence for macroscopic quantum
coherence, but can also be utilized in modern quantum technology. Here we propose an efficient approach
for creating macroscopically distinct mechanical superposition states in a two-mode optomechanical
system. Photon hopping between the two cavity modes is modulated sinusoidally. The modulated photon
tunneling enables an ultrastrong radiation-pressure force acting on the mechanical resonator, and hence
significantly increases the mechanical displacement induced by a single photon. We study systematically
the generation of the Yurke-Stoler-like states in the presence of system dissipations. We also discuss the
experimental implementation of this scheme.

DOI: 10.1103/PhysRevLett.116.163602

Introduction.—Quantum superposition [1] is at the heart
of quantum theory and is often considered a signature to
distinguish the quantum from the classical world. To date,
quantum superposition has been observed in various
physical systems [2], such as electronic [3–5], photonic
[6–9], and atomic or molecular systems [10,11], ranging
from microscopic systems to mesoscopic devices.
Nevertheless, it would be desirable to observe quantum
superposition in macroscopic mechanical systems with up
to 1010 atoms [12]. It can help us understand the funda-
mentals of quantum theory [13], such as quantum
decoherence and quantum-classical boundary in the pres-
ence of gravity [14], and has wide applications in quantum
information processing with continuous variables [9].
Recent advances in microfabrication provide the pos-

sibility of producing high-Q mechanical resonators [15].
This progress paves the way for observing and utilizing
quantum effects in macrosized mechanical systems
[16–23]. Great efforts have been devoted to controlling
the mechanical motion in optomechanics [24–26] and
nanomechanics [27,28]. However, it remains a challenge
to generate macroscopically distinct superposition states
[29] in mechanical resonators [30–39]. Decoherence by
quantum and thermal fluctuations can often destroy such
superposition. Moreover, the natural mechanical displace-
ment induced by a single photon in optomechanical
systems is proportional to the ratio of the coupling rate
to the mechanical frequency [32], g0=ωM [cf. Eq. (1)],
which is of the order of 10−5–10−2 in realistic systems [26].
To distinguish the single-photon mechanical displacement
from its zero-point fluctuation, the ultrastrong coupling
condition g0 > ωM needs to be satisfied [32].
In this Letter, we propose an efficient approach for

creating superposition of large-amplitude coherent states in
a two-mode optomechanical system by introducing a
sinusoidally modulated photon hopping between the
two cavities. This modulated photon tunneling induces a

near-resonant radiation-pressure force acting on the
mechanical resonator, with an effective detuning much
smaller than the original mechanical frequency, and hence
increases the mechanical displacement generated by a
single photon. One merit of this method is that the fidelities
of the generated mechanical states are not affected by the
decay of cavity photons. This feature enables the possibility
to observe distinct mechanical superposition states in
practical systems.
System.—Consider a two-mode optomechanical system

that consists of a free (left) cavity coupled to an opto-
mechanical (right) cavity via a modulated photon-hopping
interaction. The system is described by the Hamiltonian
(ℏ ¼ 1)

ĤðtÞ ¼ ωcðâ†LâL þ â†RâRÞ − ξω0 cosðω0tÞðâ†LâR þ â†RâLÞ
þ ωMb̂

†b̂ − g0â
†
RâRðb̂þ b̂†Þ; ð1Þ

where âLðRÞ and b̂ are the annihilation operators of the left
(right) cavity mode and the mechanical mode, with
resonant frequencies ωc and ωM, respectively. The param-
eter ω0 is the modulation frequency and ξ is the dimen-
sionless modulation amplitude of photon hopping between
the two cavities. g0 is the magnitude of the single-photon
optomechanical coupling between the right cavity and the
mechanical mode. Similar two-mode optomechanical sys-
tems have been proposed for studying quantum optics and
quantum information missions [40–44].
In a rotating frame defined by the transformation operator

T̂ðtÞ¼V̂1ðtÞV̂2ðtÞ, with V̂1ðtÞ¼expf−i½ωcðâ†LâLþâ†RâRÞþ
ωMb̂

†b̂�tg and V̂2ðtÞ ¼ exp½iξ sinðω0tÞðâ†LâR þ â†RâLÞ�,
and under the condition jδj, g0=2 ≪ ω0, ωM, we can obtain
an effective Hamiltonian by the rotating-wave approxima-
tion (RWA) as [45]

ĤRWAðtÞ ¼ gðâ†LâL − â†RâRÞðb̂e−iδt þ b̂†eiδtÞ: ð2Þ
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Here, g ¼ g0J2n0ð2ξÞ=2 is the normalized coupling constant
under a selected integer n0 and δ ¼ ωM − 2n0ω0 is a
modulation-induced detuning, where JnðzÞ is the Bessel
function of the first kind, and n0 corresponds to the near-
resonance term in the Jacobi-Anger expansions of the
sinusoidal factor in V̂2ðtÞ.
The Hamiltonian Eq. (2) describes a driven harmonic

oscillator with an effective driving force ghðâ†LâL − â†RâRÞi
on a mechanical quadrature that rotates at a frequency δ.
Under this form, the maximum mechanical displacement
induced by a single photon is 2g=jδj, which, by choosing
proper ξ and δ, could be much larger than the displacement
2g0=ωM [32] in the single-cavity case. The resonance
driving effect can be seen more clearly by introducing
the symmetric and asymmetric modes of the two cavities
[45]: â� ¼ ðâL � âRÞ=

ffiffiffi

2
p

. In the representation of â�, the
frequencies of modes â� are modulated by periodic
functions with frequency ω0, and hence the Floquet side-
band modes (with frequencies ωc þmω0 for integers m)
will assist the transitions of the system. As a result, we can
choose a proper ω0 such that the conditional displacement
process becomes resonant or near resonant and other
processes are far off resonant. The physical picture can
also be understood in the time domain [45]. By hopping a
single photon into and out of the right cavity at the proper
time, the mechanical effect of the single photon will be
amplified because the displacement effect can be accumu-
lated when the driving force and the mechanical oscillation
are in phase. At the same time, modulation sidebands are
designed to suppress other parametric processes, and hence
an enhanced radiation-pressure interaction can be obtained.
Generation of Yurke-Stoler-like states.—To generate

mechanical superposition states, we consider an initial
state jψð0Þi ¼ 1

ffiffi

2
p ðj1iLj0iR þ j0iLj1iRÞj0iM, where jn ¼

0; 1iLðRÞ are cavity-field Fock states and j0iM is the
mechanical ground state prepared via ground state cooling
[20–22]. Applying the propagator associated with ĤRWAðtÞ
on this initial state, followed by the transformation T̂ðtÞ, we
derive the state

jψðtÞi ¼ eiϑ
ffiffiffi

2
p ½j1iLj0iRjφLðtÞiM þ j0iLj1iRjφRðtÞiM�; ð3Þ

where ϑðtÞ ¼ −ðωc − g2=δÞt − ðg2=δ2Þ sinðδtÞ is a global
phase factor. The two states jφLðtÞiM ¼
cosðμ=2ÞjβðtÞiM þ i sinðμ=2Þj − βðtÞiM and jφRðtÞiM ¼
ðjφLðtÞiMÞjβ↔−β are Yurke-Stoler-like states [58], which
are quantum superposition of coherent states j � βðtÞiM,
where βðtÞ ¼ ½−2ig sinðδt=2Þ=δ�e−iðωM−δ=2Þt and μðtÞ ¼
2ξ sinðω0tÞ. For the resonant case δ ¼ 0, we have
βresðtÞ ¼ −igt expð−iωMtÞ. Equation (3) describes a
three-mode entangled state that involves two cavity modes
and a mechanical mode. To generate mechanical super-
position states jφLðRÞðtÞiM, we need to measure the states of
the cavity field.

The maximum coherent amplitude, jβjmax ¼ 2g=δ, is
controllable by tuning the two parameters ξ and ω0 based
on the relations g ¼ g0J2n0ð2ξÞ=2 and δ ¼ ωM − 2n0ω0.
We choose proper n0 and optimal ξ to reach peak values of
the Bessel function J2n0ð2ξÞ, and tune the modulation
frequency ω0 such that the value of δ can be changed
continuously. In Fig. 1(a), we plot jβjmax as a function of δ
when the first two peak values of J2ð2ξÞ (with n0 ¼ 1) are
taken (inset). A macroscopically distinct coherent ampli-
tude can always be obtained by choosing δ < 2g such that
jβjmax > 1 and then jh−βjβij ≪ 1. In this case, the two
coherent states become approximately distinguishable in
phase space by proper quadrature measurements [58,59].
The amplitude jβj ¼ ð2g=δÞj sinðδt=2Þj reaches its

maximum values at times tm ¼ ð2mþ 1Þπ=δ [i.e.,
sinðδtm=2Þ ¼ �1] for non-negative integers m.
Meanwhile, the relative probability amplitudes of the states
jφLðRÞðtÞiM depend on the time through μðtÞ. To observe
strong evidence of quantum interference, one expects that
the two components j � βðtÞiM appear with comparable
probabilities. This leads to μðτnÞ ¼ 2ξ sinðω0τnÞ ≈ ðnþ
1=2Þπ [i.e., tan½μðτnÞ=2� ≈�1] for non-negative integers
n. Near a given value of tm, there are many τn satisfying the
probability requirement because of ω0 ≫ δ. Hence, we can
choose proper time windows τn such that jβðτnÞj > 1. In
Fig. 1(b), we plot the function sinðδt=2Þ and show the
function tan½μðtÞ=2� around the time t0 ¼ π=δ (inset). We
can see that around t0 there are many values of time
satisfying the two requirements at the same time. In addition,
the timing period of the measurement is slower than the
periodic oscillation of the mechanical mode because of
ω0 ≈ ωM=2. In realistic experiments, one can turn off the
photon hopping at the detection time td (the photon detection
time, one of τn around t0), then the evolution of the system
can be approximated as a free evolution because the bare
optomechanical coupling strength g0 is much smaller than
ωM. As a result, a wider time window can be obtained for
implementing proper measurements for the cavities and the
mechanical mode.
The above analyses show a trade-off between the

displacement amplitude jβjmax ¼ 2g=δ and the state

(a) (b)

FIG. 1. (a) The maximum amplitude jβjmax vs δ=g0 at ξ ¼
1.5271 and 4.9847, which correspond to the peak values of the
Bessel function J2ð2ξÞ, as shown in the inset. (b) Time dependence
of sinðδt=2Þ and tan½μðtÞ=2� near the positions that give the large
oscillation amplitude and the equal probability superposition
in states jφLðRÞðtÞiM, where ωM=δ ¼ 80, n0 ¼ 1, and ξ ¼ 1.527.
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generation time t0 ¼ π=δ. We pursue a large jβjmax for
macroscopic superposition and a small t0 for reducing the
impact of the dissipations. In realistic simulations, we
should choose a proper δ such that jβjmax satisfies the
requirement of macroscopicity and t0 is as small as
possible. It is also worth mentioning that the detection
time can be shortened by utilizing the upslope rather than
the peak of the amplitude function j sinðδt=2Þj with a
smaller δ. For example, to obtain a displacement of
jβjmax ¼ 2, the time for the resonant case δ ¼ 0 is
tres ¼ 2=g, which is shorter than t0 ¼ π=g for the case
δ ¼ g [45].
Effects of dissipations.—To study the environmental

fluctuation effects on the state generation scheme, we
numerically simulate the state generation in the open
system case, in which the evolution of our system is
governed by the quantum master equation [45]:

_̂ρ ¼ i½ρ̂; ĤðtÞ� þ γcD½âL�ρ̂þ γcD½âR�ρ̂
þ γMðnth þ 1ÞD½b̂�ρ̂þ γMnthD½b̂†�ρ̂; ð4Þ

where D½ô�ρ̂ ¼ ô ρ̂ ô† − ðô†ô ρ̂þρ̂ô†ôÞ=2 is the standard
Lindblad superoperator for photon and phonon dampings,
γc and γM are the damping rates of the cavity fields and the
mechanical mode, respectively, and nth is the thermal
phonon occupation number. We numerically solve the
master equation and calculate the reduced density matrix
ρ̂ðLÞM ðtÞ [ρ̂ðRÞM ðtÞ] of the mechanical mode [45], the proba-
bility PLðRÞðtÞ of the photon in the left (right) cavity, and the
fidelity Fs¼LðRÞðtÞ ¼ MhφsðtÞjρ̂ðsÞM ðtÞjφsðtÞiM between the
generated mechanical states and the target states.
In Fig. 2(a), we show the time dependence of the

probability PLðtÞ at selected values of the cavity-field
decay rate γc. Note that PRðtÞ has a similar pattern to PLðtÞ
except for a slight oscillation [hereafter, we display only
PLðtÞ and FLðtÞ for concision]. We see that PLðtÞ has an
approximate exponential decay envelope with the corre-
sponding γc and slight oscillations. We also show the
probabilities PLðtdÞ and PRðtdÞ at time td as a function of γc
(inset). The curves indicate that PLðRÞðtdÞ decreases with
the increase of γc. About the fidelity, our numerical results
show that the fidelities FLðtÞ and FRðtÞ have a similar
pattern, and that the fidelities are independent of the decay
rate γc, as shown in both the dynamics [Fig. 2(b)] and the
fidelity at time td (inset). Here the negligible difference
between FLðtdÞ ¼ 0.943 and FRðtdÞ ¼ 0.939 is caused by
the RWA, and it will disappear gradually with the increase
of ωM=g0. In the presence of photon dissipation, the photon
could leak out of the cavities before the measurement.
However, the normalization of the density matrices after the
measurement ensures that in the selected experiments the
photon remains in the cavities. Hence, the fidelity of the
generated state is not affected by photon decay.
To evaluate the quantum coherence and interference

effects in the generated superposition states ρ̂ðLÞM ðtdÞ and

ρ̂ðRÞM ðtdÞ, we examine the Wigner function Ws¼LðRÞðηÞ ¼
2
π Tr½D̂†ðηÞρ̂ðsÞM ðtdÞD̂ðηÞð−1Þb̂†b̂� [60], where D̂ðηÞ ¼
expðηb̂† − η�b̂Þ is the displacement operator. It can be
seen from the relation jφRðtdÞiM ¼ ðjφLðtdÞiMÞjβ↔−β that
the Wigner function WRðηÞ should be a rotation of WLðηÞ
by π about the origin in phase space. We perform the
simulations with the parameters in Fig. 2 and find that there
is also a negligible difference between WRðηÞ and the π-
rotated WLðηÞ. The difference disappears gradually with
the increase of ωM=g0. We also find that the Wigner
functions are independent of the cavity-field decay rate,
in accordance with the fidelities. In Fig. 2(c) we display the
Wigner function WLðηÞ of the state ρ̂ðLÞM ðtdÞ. We see
obvious interference evidence in this Wigner function.
The quantum superposition properties can also be

seen in the probability distribution Ps¼LðRÞ½XðθÞ� ¼
MhXðθÞjρ̂ðsÞM ðtdÞjXðθÞiM of the rotated quadrature operator
X̂ðθÞ ¼ ðb̂e−iθ þ b̂†eiθÞ= ffiffiffi

2
p

[61], where jXðθÞiM is the
eigenstate of X̂ðθÞ: X̂ðθÞjXðθÞiM ¼ XðθÞjXðθÞiM. In
Fig. 2(d), we plot the probability distributions PL½Xðθ0Þ�
and PR½Xðθ0Þ� as functions of Xðθ0Þ. Here the rotation
angle is chosen as θ0 ¼ arg½βðtdÞ� − π=2, which means that
the quadrature direction is perpendicular to the link line
between the locations of the two superposed coherent
amplitudes. The interference is maximum in this direction
because the two coherent states are projected onto the
quadrature such that they overlap exactly. The oscillation in
the curves is a distinct evidence of the quantum interference
between the superposition components. We notice that
PL½Xðθ0Þ� and PR½Xðθ0Þ� are approximately symmetric to
each other about the vertical axis Xðθ0Þ ¼ 0, in
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FIG. 2. (a) The probability PLðtÞ and (b) the fidelity FLðtÞ vs δt
at selected values of the cavity-field decay rate γc. Insets: The
probability PLðRÞðtdÞ and the fidelity FLðRÞðtdÞ at time td versus
γc=g0. (c) The Wigner function WLðηÞ (with η ¼ ηr þ iηi) and
(d) the probability distribution of the rotated quadrature operator
PL½Xðθ0Þ� for the state ρ̂ðLÞM ðtdÞ. Other parameters are
ωM=g0 ¼ 20, n0 ¼ 1, ξ ¼ 1.5271, δ ¼ g, γM=g0 ¼ 0.0001, and
nth ¼ 4.
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accordance with the negligible difference between FLðtÞ
and FRðtÞ.
We also investigate the influence of mechanical noise on

the state generation. Our numerical simulations verify that
the probabilities PLðtÞ and PRðtÞ are independent of γM and
nth. On the contrary, the mechanical dissipations affect the
fidelities FLðtÞ and FRðtÞ. In Figs. 3(a) and 3(b), we show
the dynamics of the fidelity FLðtÞ at selected values of γM
and nth, respectively. We can see FLðtÞ becomes worse for
larger values of γM and nth. In addition, the fidelities FLðtdÞ
and FRðtdÞ at time td decrease with the increase of γM and
nth (insets). In Figs. 3(c) and 3(d), we plot the probability
distribution PL½Xðθ0Þ� for the state ρ̂ðLÞM ðtdÞ with the
parameters in Figs. 3(a) and 3(b), respectively [we can
know PR½Xðθ0Þ� from the approximate symmetry between
PL½Xðθ0Þ� and PR½Xðθ0Þ�]. Here we can see that the
oscillatory feature of PL½Xðθ0Þ� disappears gradually with
the increase of γM and nth. These results imply that
mechanical dissipations will destroy the quantum coher-
ence and interference effects in the generated mechanical
superposition. In our simulations, quantum interference
evidence can be seen, and good fidelities (> 0.9) can be
obtained.
Discussions.—Our state generation approach is general

and it can be principally implemented in various opto-
mechanical setups. Below, we focus our discussion on
electromechanical systems with cavities in the microwave
regime. For such systems, the photon hopping between
superconducting resonators can be realized via Josephson
junction coupling [62]. The initial Bell state of the cavity
fields can be prepared by a superconducting qubit, as
realized in circuit-QED systems [63,64]. In particular, a

nonperfect photon loading (i.e., containing the zero-photon
component) does not affect the fidelity but decreases the
success probability of the generated mechanical states
because all the couplings will be frozen when there are
no photons in the two cavities. The photon states in the
superconducting resonators can be measured via super-
conducting quits [65]. In addition, the generated mechani-
cal superposition states can be measured by the technique
of quantum state reconstruction [66–68]. We use another
cavity mode (in the same resonator) to build a connection
between the mechanical mode and the output field. By
detecting the quadrature of the output field, we can obtain
the information of the mechanical states [45].
The parameter conditions for implementation of this

scheme are g0 ≪ ωM, the ratio g0=γc should be moderately
larger than 1 for a high success probability (for example,
g0=γc ¼ 5–10 corresponds to the success probability 0.08–
0.285), and nth ≪ g0=ð4πγMÞ. Below, we analyze the
conditions in detail [45]. (i) For state generation purposes,
we choose δ < 2g ≪ ωM, then the RWA condition can be
simplified as g0 ≪ ωM, which is consistence with the
current experimental situation [26]: g0=ωM is of the order
of 10−5–10−3. (ii) The photon decay does not affect the
fidelity, but it affects the probability by P ≈ e−4πγc=g0 at
δ ¼ g. Currently, the value of g0=γc is 10−4–10−2 [25]. This
value can be increased by either increasing g0 or decreasing
γc. In electromechanical systems, γc ¼ 2π × 170 kHz [69]
and γc ¼ 2π × 118 kHz [70] have been reported. The value
of γc can be further decreased to be dozens of kilohertz
[71]. The largest value of g0 reported in electromechanics is
2π × 460 Hz [69], and theoretic estimations indicate that it
can reach megahertz by utilizing the nonlinearity in
Josephson junction [72,73]. Therefore, g0=γc > 5 should
be accessible in the near future. In particular, in the resonant
case δ ¼ 0 and at jβjmax ¼ 1, the success probability can be
improved to be P ≈ e−4γc=g0 , which takes P ¼ 0.14–0.45
for g0=γc ¼ 2–5. (iii) The thermal phonon number nth
should be small such that the state generation time is much
shorter than the characteristic coherence time of the
phonons, i.e., td ≈ 4π=g0 ≪ 1=ðγMnthÞ, which leads to
nth ≪ g0=ð4πγMÞ. Currently, the ratio g0=γM is 101–102

[26] (this value can be increased to 104 when g0 is increased
as described above). In a low-temperature environment,
nth < 30 can be obtained. For example, at T ¼ 10 mK [70],
we have nth ≈ 20 at ωM ¼ 2π × 10 MHz. Therefore,
the condition nth ≪ g0=ð4πγMÞ can be satisfied in
electromechanics. Based on the above discussions, we
suggest the parameters to be ωc ¼ 2π × ð5–10Þ GHz,
γc ¼ 2π × ð25–200Þ kHz, ωM ¼ 2π×10MHz, γM ¼ 2π×
ð50–500Þ Hz, and g0 ¼ 2π × 500 kHz, which are consis-
tent with the values used in our simulations [45].
Conclusions.—We have proposed an efficient method for

creating macroscopically distinct superposition states in a
mechanical resonator. This method is based on the intro-
duction of a modulated photon-hopping interaction in a

(a) (b)

(c) (d)

FIG. 3. The fidelity FLðtÞ vs δt at selected values of (a) the
mechanical decay rate γM=g0 and (b) the thermal phonon
occupation number nth. Insets: The fidelity FLðRÞðtdÞ at time td
vs γM=g0 and nth. The probability distribution of the rotated
quadrature operator PL½Xðθ0Þ� of the state ρ̂ðLÞM ðtdÞ at selected
values of (c) γM=g0 and (d) nth. Other parameters are
ωM=g0 ¼ 20, n0 ¼ 1, ξ ¼ 1.5271, δ ¼ g, and γc=g0 ¼ 0.2.

PRL 116, 163602 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

22 APRIL 2016

163602-4



two-mode optomechanical system to produce large effec-
tive single-photon optomechanical coupling. Numerical
simulations demonstrate that our method works well in
the presence of dissipations and can be realized in a wide
parameter range.
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