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We consider the generation of a magnetic field by the flow of a fluid for which the electrical conductivity
is nonuniform. A new amplification mechanism is found which leads to dynamo action for flows much
simpler than those considered so far. In particular, the fluctuations of the electrical conductivity provide a
way to bypass antidynamo theorems. For astrophysical objects, we show through three-dimensional global
numerical simulations that the temperature-driven fluctuations of the electrical conductivity can amplify an
otherwise decaying large scale equatorial dipolar field. This effect could play a role for the generation of the
unusually tilted magnetic field of the iced giants Neptune and Uranus.
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The current explanation for the existence of a magnetic
field in astrophysical objects was given in 1919 by Larmor
[1]. The motion of an electrically conducting fluid ampli-
fies a seed of magnetic field by induction: this is the
dynamo instability. Despite nearly a hundred years of
research, several questions remain open. One of the reasons
is that, for a flow to be dynamo active, it has to be complex
enough.
For instance, for a fluid with uniform physical properties,

planar flows cannot create magnetic fields [2]. This result,
together with other similar antidynamo theorems [3],
severely constrains the structure of the flows that can act
as dynamos. Broadly speaking, both the flow and the
resulting magnetic field must be complex enough.
In an astrophysical object, considering the electrical

conductivity σ as a constant is a very crude simplification.
In most natural situations (liquid core of planetary dyna-
mos, plasmas of stellar convection zones, galaxies), the
temperature T, the chemical compositions Ci, and the
density of the fluid ρ are expected to display large
variations. As a result, the electrical conductivity of the
fluid is unlikely to remain uniform in the bulk of the flow.
In other words, σ, that is determined by ρ, T, and Ci can be
written as a function of space and time σðr; tÞ because ρ, T,
and Ci are functions of space and time. The effect of a
boundary of varying conductivity close to a flow tangent to
the boundary had been considered to model inhomogene-
ities of the Earth mantle [4]. A dynamo instability has been
predicted but requires a flow with a huge velocity [5]. In
this article, we describe how magnetic field generation is
affected by conductivity variations in the bulk of the fluid.
To calculate this effect, we have to take into account that

σ depends on position in the equation for the magnetic field
that reads

∂B
∂t ¼ ∇ × ðv ×BÞ −∇ ×

�
1

σ
∇ ×

�
B
μ0

��
: ð1Þ

Insight can be obtained using the approximation of scale
separation. We assume that the velocity and conductivity
fields are periodic of period l. We note h·i the spatial
average over l. Let the magnetic diffusivity be
η ¼ ðμ0σÞ−1 ¼ η0 þ δη, where η0 is the mean of η and
δη its variations. We write B ¼ hBi þ b and consider that
hBi varies on a very large scale compared to l. In this limit,
hBi satisfies a mean-field (closed) equation that reads

∂hBi
∂t ¼ ∇ × ðαhBiÞ þ η0∇2hBi; ð2Þ

where αhBi is the sum of two terms,

αhBi ¼ hv × bi − hδη∇ × bi: ð3Þ

Provided that δη and the small scale field are small
compared to, respectively, η0 and the large scale field, b
is solution of

∂b
∂t − η0∇2b ¼ hBi · ∇v; ð4Þ

such that by virtue of scale separation b can be calculated
as a function of the large scale field hBi. Then α is obtained
which closes Eq. (2). The term hv × bi is the usual alpha
effect [3] and writes hv × bi ¼ αhhBi. The tensor αh can be
expressed using the Fourier transform of the velocity field
v̂ ¼ ð2πÞ−3=2 R v expðikrÞd3r, where for simplicity we
have set l ¼ 2π in all directions. We obtain

αhu;j ¼ ð2πÞ−3iΣk
kj

η0k2
½v̂ð−kÞ × v̂ðkÞ�u: ð5Þ

This is the usual result for the α tensor in a homogeneous
fluid. The second term in Eq. (3) is new and reads
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ασu;jhBji ¼ −hδη∇ × bi

¼ ð2πÞ−3Σk
k · hBi
η0k2

δ̂ηð−kÞ½k × v̂ðkÞ�u: ð6Þ

Introducing the vorticity Ω ¼ ∇ × v, the new part of the α
tensor can be written

ασu;j ¼ −ð2πÞ−3iΣk
kj

η0k2
½ bδηð−kÞbΩuðkÞ�

¼ ð2πÞ−3Σk

d∂jδηð−kÞbΩuðkÞ
η0k2

¼ −ð2πÞ−3Σk

bδηð−kÞ d∂jΩuðkÞ
η0k2

: ð7Þ

Large values of ασ thus require strong correlations
between diffusivity variations and gradients of the vorticity
or, equivalently, between gradients of diffusivity and vor-
ticity. This can be understood by considering a vortical flow
in which the vorticity is modulated in the ϕ direction, a
classical picture of convective flows in planetary cores, as
sketched in Fig. 1. Assume that a large scale magnetic field is
applied in the ϕ direction. Calculating v ×B, we observe
that currents of opposite signs are induced in the vertical z
direction. Then, the azimuthal variation of electrical con-
ductivity strengthens the current in one direction and reduces
it in the opposite one. This results in a total electric current
flowing in the z direction as predicted by our calculation.
This current can in turn amplify the magnetic field.
Having identified the pertinent properties of

the velocity and conductivity fields, we now discuss one
example. Let the velocity be v ¼ (A cosðkyÞ sinðkzÞ;
B cosðkxÞ sinðkzÞ; 0) and the diffusivity variation be
δη=η0 ¼ δ( cosðkzÞ( sinðkyÞ − sinðkxÞ)). The velocity
field is a periodic array of counterrotating vortices located
in the x-y planes. The amplitude of the velocity field is
simply modulated in the z direction. The α tensor
reads hv × bi ¼ 0 and h−δη∇ × bi ¼ δ=8(BBx; ABy;
−ðAþ BÞBz). We then calculate the growth rate p for a
large scale mode proportional to exp ðptþ iKzÞ and obtain
p ¼ ðjδKj ffiffiffiffiffiffiffi

AB
p

=8Þ − η0K2. Dynamo instability is possible
provided Rm ¼ jδj ffiffiffiffiffiffiffi

AB
p

=ðη0jKjÞ > 8. We point out that for
this flow, in the absence of conductivity variation, no
dynamo would be possible.
The asymptotic results derived here were confirmed

using numerical simulations. To achieve large scale sepa-
ration, we used a code based on Floquet theory, allowing us
to write the solutions of Eq. (1) as Bðx; tÞ ¼ eiK·xbðx; tÞ,
whereK is an arbitrary wave number and bðx; tÞ is a space-
periodic vector field with the same period as v and η. The
numerically calculated growth rates for the flow are shown
in Fig. 2 for Rm ¼ 1=6 and different values of K and δη,
and show an excellent agreement with the asymptotic
results. Note that, because of scale separation, even small
values of the diffusivity variation δη lead to a dynamo.

FIG. 1. Sketch of the different steps involved in the amplifi-
cation mechanism ασ for a typical geophysical flow. Top: Two
adjacent convective cells (gray cylinders) with axial vorticity ω
are subject to a transverse azimuthal magnetic field B (red).
Middle: Both upward and downward axial currents J ∝ ðv × BÞ
(blue) are induced between the convective cells. Bottom: In the
presence of conductivity gradients correlated to the vorticity
(maximum gradient represented by pink dashed lines), large
(respectively, low) conductivity increases (respectively, de-
creases) the induced current: the resulting net upward current
J0 is parallel to the vorticity.

FIG. 2. The growth rates for the 2D flow considered in the text
as a function ofK, for Rm ¼ 1=6 and three different δη. Symbols
correspond to numerically evaluated growth rates and straight
lines to the analytical prediction.
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This mechanism provides a simple way to bypass
antidynamo theorems and may thus play a role in the
creation of magnetic fields of astrophysical objects. As a
first step towards answering this question, we have con-
sidered the generation of magnetic field by the flow of a
thermally convecting Boussinesq fluid contained in a
rotating spherical shell, thus modeling stellar or planetary
core configurations. Fixed temperatures are imposed at
both inner and outer boundaries, no-slip boundary con-
ditions are used for the velocity field, and both boundaries
are electrically insulating. The dimensionless parameters
are the shell aspect ratio γ ¼ ri=ro, the magnetic Prandtl
number Pm ¼ ν=η0, the Ekman number E ¼ ν=ΩD2, and
the Rayleigh number Ra ¼ αg0ΔTD=ðνΩÞ, where D ¼
ro − ri is the gap and Ω, ν, η0, κ, α, and g0 are, respectively,
the rotation rate, the kinematic viscosity, the spatially
averaged magnetic diffusivity, the thermal diffusivity, the
thermal expansion coefficient, and the gravity at the outer
sphere. Equations of magnetohydrodynamics for the veloc-
ity v, magnetic field B, and temperature T are solved with
the help of the code PaRoDy [6], which has been modified to
take into account the spatial variation of the electrical
conductivity. As a simple example, we assume here that the
magnetic diffusivity η depends on the temperature as
η ¼ η0 þ kðT − T0Þ, where the proportionality coefficient
k is kept as a control parameter. Several configurations have
been considered: conductivity depending only on the tem-
perature fluctuations or on both the temperature fluctuations
and the background temperature profile. In addition, differ-
ent widths of the spherical shell have been tested. Note that
effects of radially varying conductivity were studied in [7], in
which it was shown that a low-conductivity layer close to the

core-mantle boundary may explain Mercury’s weak observ-
able magnetic field. Here, we rather study the case of
conductivity depending on the temperature field that can
fluctuate in all directions.
Although the parameter space is huge and further work is

required to fully characterize the effect of a varying
conductivity, it can be identified that a transverse dipolar
field benefits from a modulation of electrical conductivity
in typical geodynamo simulations. Figure 3 shows the
growth rate of the magnetic field as a function of the
amplitude of the conductivity modulation for γ ¼ 0.35,
E ¼ 6 × 10−4, Ra=Rac ¼ 2.2 (Ra ¼ 123), and Pm ¼ 7.9.
In the case of an homogeneous conductivity (δη=η0 ¼ 0),
an axial dipole is observed (black curve), as usual for these
parameters. As the coupling coefficient k between the
temperature and the conductivity is increased, the growth
rate of this dipole decreases until it becomes kinematically
stable. In contrast, the growth rate of the equatorial dipole
mode (red curve) increases from negative to positive values.
As soon as δη=η0 reaches 5%, the modulation of the
electrical conductivity changes the structure of the dynamo
field, replacing the axial dipole by a transverse one. For
both modes, we observe a linear relation between the
growth rate and the conductivity modulation, as predicted
by our theory.
This effect of the conductivity modulation is observed in

a wide region of the parameter space. For instance, Fig. 4
displays the spatial structure of the dynamo magnetic field
obtained for E ¼ 10−3, Ra=Rac ¼ 2, Pm ¼ 7, and
δη=η0 ¼ 0.4, corresponding to an equatorial dipolar field.
Note that for these values of E and Ra, the conductivity
fluctuations decrease the dynamo onset by roughly 20%
compared to the homogeneous case.

FIG. 4. Structure of the saturated equatorial dipole generated
for E ¼ 10−3, Pm ¼ 7, Ra=Rac ¼ 2, and δη=η0 ¼ 0.4. The
colored sphere indicates amplitude of the radial magnetic field
at the surface of the core-mantle boundary and magnetic field
lines in the insulating mantle are shown.
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FIG. 3. Growth rate of the magnetic energy in the kinematic
phase as a function of the (temperature-driven) electrical con-
ductivity modulation in a dynamo simulation, for E ¼ 6 × 10−4,
Pm ¼ 7.9, and Ra=Rac ¼ 2.2, for axial (black) and equatorial
(red) dipole modes. Note that the axial dipole obtained at
δη=η0 ¼ 0 is replaced by a transverse dipole in presence of
conductivity modulation.
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To understand how such a temperature-dependent
conductivity decreases the dynamo onset, it is
important to note that geophysical flows, strongly affected
by Taylor-Proudman theorem, mainly consist of several
columnar vortices arranged along the azimuthal direction
(the so-called Busse columns [8]) with temperature gradient
maximum at the center of the vortices. This convective
pattern is therefore characterized by a strong correlation
between the axial vorticity and the azimuthal gradient
of temperature, as illustrated in Fig. 5. The component
ð∇ × uÞjz · ∇ϕðδηÞ is mainly localized in the equatorial
plane, thus suggesting that this nondiagonal term of the ασ

tensor is responsible for the generation of the field. Note that
this differs from the diagonal part of the usual α effect,
which vanishes in the equatorial plane. The ασ effect, being
strong in the equatorial plane, thus provides a possible
explanation for the equatorial dipolar component of the
magnetic field observed in Neptune and Uranus [9,10].
To discuss further the relevance of this effect, it is

interesting to compare its efficiency with the one of an α2

dynamo. In scale separation, the onset for an α2 dynamo is
given by V

ffiffiffiffiffi
lL

p
=η ¼ C1, where C1 is a constant, V is the

amplitude of the velocity, l is the wavelength of the flow,
and L is the size over which the large scale field varies. For
an ασ dynamo, the onset is δVL=η ¼ C2, where C2 is a
constant and δ the amplitude of the relative variations of
conductivity. Thus, for a flow that is prone to both effects,
the ασ dynamo leads to a smaller onset provided
δ

ffiffiffiffiffiffiffiffi
L=l

p
≫ 1, meaning that this new kind of dynamo is

expected when scale separation is large enough.
As the efficiency of the ασ effect depends crucially on the

variations of the electrical conductivity, it is worth discus-
sing possible sources for these variations that are met in
nature. In a telluric planet such as the Earth, the time-
averaged electrical conductivity varies with the depth in the
liquid core due to the increase of temperature and pressure
[11]. However, one has to consider the effect of the

convective temperature fluctuations which are quite smaller
than the static radial variations. These fluctuations are the
sources of both the conductivity variations and the velocity
fluctuations, and simple estimates of their intensities show
that the efficiency of the ασ effect is larger than the one of
the usual α effect when scale separation is large enough. It
is then worth noting that rapid rotation results in a drastic
shortening of the characteristic length scale of convective
pattern [12], so that this new kind of dynamo should be
relevant for rapidly rotating astrophysical objects.
In the case of the Sun, temperature differences of

200–400 K are measured at the surface between ascending
and descending plumes. For linear dependance of σ on T,
this would correspond to relative variations of σ of 3% to
7%, making the dimensionless parameter δVL=η large
enough for the ασ effect to play a role.
The magnetic field is known to play a role in the

dynamics of the Sun convective zone. This sheds light
on another possible source for conductivity variations:
Ohmic dissipation itself. On can imagine that the electric
currents heat up locally the fluid so that it modifies the
conductivity and affects the efficiency of the ασ effect. This
would result in a nonlinear mechanism that could act as a
saturation mechanism if the efficiency of the effect is
decreased by Joule heating or, if the efficiency is increased,
could be responsible for a nonlinear amplification. This
effect thus provides a new scenario for a subcritical dynamo
instability.
In the laboratory, the ασ effect can be used to build

dynamo flows simpler than those considered so far. Indeed,
the possibility to use planar flow greatly simplifies the
geometrical constraints. Using liquid sodium which dis-
plays a decrease of conductivity of more than 25% between
100 and 200 degrees, a periodic array of counterrotating
vortices with proper control of temperature variations
would generate a dynamo at a magnetic Reynolds number
achievable at the laboratory scale.
Finally, one may use the ασ effect to modify the onset of

an existing laboratory dynamo setup. The Karlsruhe
dynamo [13] is the simplest configuration to analyze, as
it is made of a periodic array of helical flows. By imposing
conductivity variations between the different vortices, an ασ

effect is added to the α effect. A corresponding decrease of
the critical magnetic Reynolds number proportional to
δη=ðVlÞ is expected, leading to a possible threshold
reduction of roughly 10%.
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FIG. 5. Equatorial cut of the purely hydrodynamical state
obtained for E ¼ 6 × 10−4 and Ra=Rac ¼ 2.2. The color plot
displays the amplitude of the azimuthal temperature gradient
∂ϕT, whereas black lines are isocontours of the axial component
of the vorticity ð∇ × uÞ · ez. Note the strong correlation between
the two quantities.
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