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As PT and CP symmetries are fundamental in physics, we establish a unified topological theory of PT
and CP invariant metals and nodal superconductors, based on the mathematically rigorous KO theory.
Representative models are constructed for all nontrivial topological cases in dimensions d ¼ 1, 2, and 3,
with their exotic physical meanings being elucidated in detail. Intriguingly, it is found that the topological
charges of Fermi surfaces in the bulk determine an exotic direction-dependent distribution of topological
subgap modes on the boundaries. Furthermore, by constructing an exact bulk-boundary correspondence,
we show that the topological Fermi points of the PT and CP invariant classes can appear as gapless modes
on the boundary of topological insulators with a certain type of anisotropic crystalline symmetry.
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Introduction.—Since the discovery of topological insula-
tors, rapid progress has been made in our understanding of
topological band theory [1–3]. Recently, much attention
has been paid to topological metals or semimetals, which
are characterized by nodal band structures whose stability
is guaranteed by certain symmetries and a nontrivial wave
function topology [4–7]. The Bloch wave functions of these
gapless systems possess a nonzero topological invariant
index (e.g., a Chern, winding, or Z2 number). Thus far,
several distinct types of topological semimetals have been
explored, including semimetals with Dirac points [8–10],
Weyl points [11–13], and Dirac line nodes [14–18].
Experimentally, these topological phases are realized in
many different systems. For example, Weyl point nodes
have been reported to exist in TaAs [19,20] and NbAs [21],
while Dirac line nodes occur in Ca3P2 [22], PbTaSe2
[23,24], ZrSiS [25], and carbon allotropes [26,27].
Topological nodal phases have also been created artificially
using photonic crystals [28,29] and ultracold atoms in
optical lattices [30,31]. Moreover, nodal topological band
structures can arise in superconductors with unconventional
pairing symmetries [32–34].
In exploring these nodal topological phases, several

significant advances have been made recently to classify
Fermi surfaces in terms of antiunitary symmetries (e.g.,
time reversal and particle-hole symmetries) [6,7,35,36], as
well as unitary symmetries (e.g., reflection and rotation
symmetries) [37–41]. These pieces of work have broadened
and deepened our knowledge of symmetry-protected topo-
logical materials. However, a unified topological theory of
nodal phases that possess the combined symmetry of
unitary with antiunitary operations, including a compre-
hensive classification, is still awaited. In particular, the
combined symmetry of time reversal T (or particle-hole C)
with inversion P is of fundamental importance. Similar to

particle physics, these combined symmetries play funda-
mental roles in many condensed matter systems, such as
centrosymmetric crystal structures, superfluid 3He [4], and
possibly some heavy fermion superconductors [42].
In this Letter, we establish a unified theory for the

topological properties of PT and CP symmetry-protected
nodal band structures, based on KO theory [43–47], i.e.,
the K theory of real vector bundles. Using the homotopy
groups of KO theory, we topologically classify PT and CP
invariant Fermi surfaces (Table I). Interestingly, in this
classification the same K groups appear as in the classi-
fication of strong topological insulators and superconduc-
tors (TIs and TSCs) [47–50], but in a reversed order. We
construct concrete models for all topologically nontrivial
Fermi surfaces in dimensions d ¼ 1, 2, and 3, and elaborate
on how the topological charges of the Fermi surfaces in the
bulk determine the distribution of topological subgap
modes on the boundaries. Furthermore, we show that the
PT and CP invariant topological Fermi points can be
reinterpreted as the boundary modes of TIs and TSCs with
certain anisotropic crystalline symmetries [specified in
Eqs. (16) and (17)], thereby realizing an exact bulk-
boundary correspondence.
Topological Fermi surfaces with PT symmetry.—Let us

start by considering systems with the combined symmetry

TABLE I. Classification table of PT and CP invariant Fermi
surfaces.

dc 0 1 2 3 4 5 6 7

ðP̂ T̂Þ2 ¼ þ1 Z Z2 Z2 0 2Z 0 0 0
ðĈ P̂Þ2 ¼ þ1 Z2 0 2Z 0 0 0 Z Z2

ðP̂ T̂Þ2 ¼ −1 2Z 0 0 0 Z Z2 Z2 0
ðĈ P̂Þ2 ¼ −1 0 0 Z Z2 Z2 0 2Z 0
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PT. When a quantum system has both T and P symmetries,
the Hamiltonian densityHðkÞ in momentum space satisfies

T̂HðkÞT̂−1 ¼ Hð−kÞ and P̂HðkÞP̂−1 ¼ Hð−kÞ; ð1Þ
respectively, where T̂ is an antiunitary operator,
T̂iT̂−1 ¼ −i, while P̂ is unitary, P̂iP̂−1 ¼ i. In this work
we only require the combined symmetry A ¼ PT for the
topological stability, while perturbations breaking both T
and P but preserving PT are allowed. A ¼ PT is antiuni-
tary, ÂiÂ−1 ¼ −i, acting on HðkÞ as

ÂHðkÞÂ−1 ¼ HðkÞ: ð2Þ
It is important to observe that the symmetry PT operates
trivially in momentum space, which motivates our classi-
fication strategy, namely, (i) to determine the topological
space of the Hamiltonians pointwisely in k space and (ii) to
classify the topological configurations of HðkÞ on the dc-
dimensional sphere Sdc enclosing the gapless region. Here,
dc ¼ d − dFS − 1 for a dFS-dimensional Fermi surface in
d-dimensional k space. These two steps can be performed
by use of the theory of real Clifford algebras and KO
theory, respectively. The details of these mathematical
derivations are given in the Supplemental Material (SM)
[51]. Because of the antiunitarity of Â, we treat the
imaginary unit i as an operator [51,52], which allows us
to construct a Clifford algebra with the three generators, Â,
iÂ, and iH, and the anticommutators,

fÂ; iÂg ¼ 0; fÂ; iHg ¼ 0; fiH; iÂg ¼ 0: ð3Þ
Assuming that the chemical potential μ ¼ 0, it is sufficient
for our topological purpose to study flattened Hamiltonians
~HðkÞ, whose band spectra are normalized such that
~H2ðkÞ ¼ 1 for every point k where the spectrum is gapped.
With this normalization, the squares of the above gener-
ators are given by

ðiHÞ2 ¼ −1; Â2 ¼ ðiÂÞ2 ¼ �1; ð4Þ
where Â2 ¼ ðiÂÞ2 due to the antiunitarity of Â.
We first consider Â2 ¼ þ1, in which case both Â and iÂ

are positive, generating the Clifford algebra C0;2, which is
further extended to C1;2 by the negative generator iH. In
other words, the topological space of all PT invariant H is
determined by all possible Clifford algebra extensions from
C0;2 to C1;2. Since the extension C0;2 ⊂ C1;2 is equivalent to
C0;0 ⊂ C0;1, the topological space is equivalent to R0, the
zeroth classifying space of KO theory [43–45]. According
to our classification strategy, we next need to classify
the topological configurations of R0 on the sphere Sdc . To
do so, we note that since the trivial action of PT in k
space corresponds to the trivial involution of KR theory,
the classification is given by KO theory, the simplest
instance of KR theory. Hence, the classification of PT

invariant Fermi surfaces with Â2 ¼ þ1 follows from the
KO groups

~KOðSdcÞ ≅ Z;Z2;Z2; 0; 2Z; 0; 0; 0; ð5Þ

with dc ≡ 0; 1;…; 7 mod 8, and ~KO ¼ ~KO−0, where “0”
is determined by the classifying space R0.
Second, we consider Â2 ¼ −1, in which case Â and iÂ

generate the Clifford algebra C2;0, which is extended by iH
to C3;0. From C2;0 ⊂ C3;0 ≈ C0;4 ⊂ C0;5, it follows that the
topological space of Hamiltonians is given by R4. Thus, the
classification of Fermi surfaces with codimension ðdc þ 1Þ
and Â2 ¼ −1 is

~KO−4ðSdcÞ ≅ 2Z; 0; 0; 0;Z;Z2;Z2; 0; ð6Þ
with dc ≡ 0; 1;…; 7 mod 8.
Topological Fermi surfaces with CP symmetry.—Next,

we look into CP symmetric Fermi surfaces (or super-
conducting nodes). C is implemented by an antiunitary
operator Ĉ, which acts on the Hamiltonian as

ĈHðkÞĈ−1 ¼ −Hð−kÞ: ð7Þ

Accordingly, we need to consider the Clifford algebra
generated by B̂ ¼ Ĉ P̂,H, and iB̂with the anticommutators

fB̂;Hg ¼ 0; fB̂; iB̂g ¼ 0; fH; iB̂g ¼ 0: ð8Þ
As before, we normalize the band spectrum such that

H2 ¼ 1; B̂2 ¼ ðiB̂Þ2 ¼ �1: ð9Þ

For B̂2 ¼ þ1, one can find that the Hamiltonian space is
equivalent to R2 [51], corresponding to the Clifford algebra
extension C0;2 ⊂ C0;3. From this it follows that the clas-
sification is given by

~KO−2ðSdcÞ ≅ Z2; 0; 2Z; 0; 0; 0;Z2;Z; ð10Þ
with dc ≡ 0; 1;…; 7 mod 8. For B̂2 ¼ −1, on the other
hand, the Hamiltonian space is R6, corresponding to
C2;0 ⊂ C2;1 ≈ C0;6 ⊂ C0;7. This leads to the classification

~KO−6ðSdcÞ ≅ 0; 0;Z;Z2;Z2; 0; 2Z; 0; ð11Þ

with dc ≡ 0; 1;…; 7 mod 8. This concludes the derivation
of the classification, as summarized in Table I.
Several comments are in order. First, note that all

classifications are given by ~KO−qðSdcÞ, where q is even
and denotes the index of the classifying space Rq [53].
Second, in the present classification, the K groups as a
function of dc appear in reverse order compared to the
tenfold classification of Fermi surfaces and strong TIs and
TSCs [47]. Third, if we replace dc by the spatial dimension
d, KO theory yields the classification of PT and CP
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invariant TIs and TSCs, since PT and CP act trivially in
momentum space [50]. Note, however, that these TIs and
TSCs do not exhibit any symmetry-protected surface
states, since the boundary breaks PTðCPÞ. Finally, we
emphasize that the classification relies only on the com-
bined symmetry PTðCPÞ. Both P and TðCÞmay be broken
individually, but the combination must be preserved,
which is in contrast to previous studies of P-symmetric
systems [38].
Representative models.—We now construct representa-

tive models for all nontrivial cases of the classification in
the physical dimensions d ¼ 1, 2, and 3. (The computation
of the corresponding topological charges is presented in the
SM [51]). Discussing the symmetry classes in the same
sequence as before, we start with the symmetry class
Â2 ¼ ðPTÞ2 ¼ þ1, for which there exist topologically
nontrivial Fermi surfaces in all physical dimensions, since
for dc ¼ 0, 1, and 2 the classification is given by Z, Z2, and
Z2, respectively. The case dc ¼ 0 simply corresponds to
Fermi surfaces of spinless free fermions in any dimension
d; see Refs. [51,54]. The case dc ¼ 1 corresponds to
topological Fermi points (lines) in 2D (3D) with Z2

topological charge. For 2D, a simple model can be
constructed with rank-2 matrices. We choose T̂ ¼ K̂ and
P̂ ¼ σ3, which yields Â ¼ σ3K̂ and ½T̂; P̂� ¼ 0, where K̂
denotes the complex conjugate operator and σj’s are Pauli
matrices. (Alternatively, one can consider T̂ ¼ −iσ2K̂ and
P̂ ¼ σ1 with the anticommutation relation fT̂; P̂g ¼ 0).
Thus, the general form of the Hamiltonian is
H0 ¼ f1ðkÞσ2 þ f2ðkÞσ3, with fi arbitrary functions of
k, since PT merely forbids the σ1 term. For concreteness,
let us choose

H0 ¼ kxσ2 þ ðk2y − R2Þσ3; ð12Þ

with the constant R ∼ 1. H0 exhibits two Dirac points at
k ¼ ð0;�RÞ with topological charges ν ¼ �1. The low-
energy physics in the vicinity of these two gapless points is
described by the Dirac-type Hamiltonian H� ¼ kxσ2�
kyσ3, whose stability is guaranteed by a quantized Berry
phase [51,55]. Note that H0 has both T and P symmetries.
However, the Dirac points cannot be gapped out by
P and T breaking perturbations that satisfy PT, such as
H0 ¼ μσ0 þ ðηþ ϵ1k2xÞσ2 þ ϵ2kyσ3. These perturbations
only change the local properties of the Dirac points,
e.g., position and dispersion, but do not open a full gap.
We emphasize that the Z2 Fermi points of H0 are
fundamentally different from those with Z classification
in symmetry class AIII, although in both cases σ1 terms are
symmetry forbidden. To illustrate the Z2 nature of the
Fermi points, we consider a doubled version ofH0, namely,
H0 ⊗ τ0. It is found that there are PT-preserving pertur-
bations, for instance, mσ1 ⊗ τ2, that open up a full gap.
However, all of these gap opening perturbations are
forbidden by chiral symmetry. Hence, the discussed Z2

Fermi points are clearly distinct from the Z Fermi points of
class AIII [6,7,35]. A lattice version of Eq. (12), HðkÞ ¼
sin kxσ2 þ ðλ − cos kyÞ (jλj < 1), will be discussed in detail
later. It is also noted that H0 can straightforwardly be
extended to a 3D case with a nontrivial nodal loop [51].
Next, we consider the case Â2 ¼ þ1 with dc ¼ 2.

According to Table I, there exist in this symmetry class
PT-preserving Fermi points in d ¼ 3 with a Z2 charge. A
minimal model for theseZ2 Dirac points can be constructed
by rank-4 matrices. Choosing Â ¼ σ3 ⊗ τ0K̂, we find that
the following continuum model exhibits such a Dirac point:

HDðkÞ ¼ kxσ1 ⊗ τ2 þ kyσ2 ⊗ τ0 þ kzσ3 ⊗ τ0; ð13Þ

where τj’s are a second set of Pauli matrices. Observe that
the two independent mass matrices σ1 ⊗ τ3 and σ1 ⊗ τ1
are forbidden by PT symmetry. However, the Fermi point
of the doubled HamiltonianHD ⊗ κ0 can be gapped out by
the mass terms mσ1 ⊗ τ1 ⊗ κ2 and mσ1 ⊗ τ3 ⊗ κ2, with
κj’s being Pauli matrices, which illustrates the Z2 nature of
the Dirac point of HD.
For symmetry class Â2 ¼ −1, the only nontrivial case in

d ¼ 1, 2, or 3 is dc ¼ 0, which has a 2Z classification
(Table I). This simply corresponds to spinful free fermions.
Choosing T̂ ¼ iσ2K̂ and P̂ ¼ σ0, which yields Â ¼ iσ2K̂
and ½T̂; P̂� ¼ 0, the spinful free-fermion Hamiltonian is
given by Hs

free ¼ k2=2mσ0 − μσ0. Note that all spin-orbit
coupling terms involving σj (j ¼ 1, 2, 3) are excluded by
PT symmetry.
Let us now turn to nodal band structures with CP

symmetry. For symmetry class B̂2 ¼ ðCPÞ2 ¼ þ1 with
dc ¼ 0, there exist nodes with a Z2 classification. To
construct a representative model, we choose Ĉ ¼ τ1K̂
and P̂ ¼ iτ2, so that B̂ ¼ τ3K̂. Since the only Pauli matrix
that anticommutes with B̂ is τ1, we find that the continuum
model is HðkÞ ¼ kτ1 in 1D. It is obvious that the mass
terms mτ2 and mτ3 are forbidden by CP symmetry. To see
the Z2 nature of the Fermi point, we observe that the
doubled Hamiltonian ~HðkÞ ¼ kτ1 ⊗ σ0 with the trivial Z2

charge can be gapped by the CP invariant terms mτ3 ⊗ σ2
and mτ2 ⊗ σ2. Models of these CP invariant nodes in 2D
and 3D can be constructed in an analogous manner.
For B̂2 ¼ þ1 and dc ¼ 2, there is a 2Z classification. A

representative model can be constructed by 4 × 4 matrices.
Choosing B̂ ¼ τ3 ⊗ σ0K̂, the continuum Hamiltonian is
given by

Hdouble
W ¼ kxτ1 ⊗ σ1 þ kyτ0 ⊗ σ2 þ kzτ1 ⊗ σ3; ð14Þ

since there are only three mutually anticommuting 4 × 4
matrices that also anticommute with B̂. Hdouble

W exhibits a
double Weyl point at k ¼ 0 with topological charge ν ¼ 2,
which is defined in terms of a Chern number on a sphere
enclosing the Weyl point [51,56]. Despite its similar
appearance, this model should be distinguished from the
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Dirac Hamiltonian Eq. (13) that has a vanishing Chern
number. The remaining nontrivial case in physical dimen-
sions is dc ¼ 2 for B̂2 ¼ −1, which may be exemplified by
a Weyl point [51].
In passing, we note that the A phase of 3He can be

viewed as an example of CP symmetry-protected nodal
points. 3He-A has both C and P symmetry with Ĉ ¼ iσ2 ⊗
iτ2K̂ and P̂ ¼ τ3, respectively, which yields ðĈ P̂Þ2 ¼ −1
[4]. Thus, according to Table I the classification of the
3He − A point nodes is of Z type with a topological charge
of �2, due to spin degeneracy. CP invariant perturbations,
such as spin-orbit coupling, may split the spin degeneracy,
which divides the doubly charged Weyl points into Weyl
points with charge one. This is in contrast to the elementary
Fermi point of Eq. (14), which has a 2Z classification.
Bulk-boundary correspondences.—The distribution of

subgap states at the boundary of topological metals or
semimetals is determined by the topological charges of the
Fermi surfaces in the bulk. This is illustrated in Fig. 1(a),
which shows how a small sphere S2 (or circle S1) enclosing
the bulk gapless region may be deformed continuously into
two large S2’s (S1’s) in the Brillouin zone (BZ) due to the
periodicity in k. By regarding these large S2’s (S1’s) as
subsystems of the whole system, we obtain the following
relation:

ν ¼ NR − NL; ð15Þ

where ν is the topological charge of the Fermi surface and
NR=L are the topological numbers on the right or left S2

(S1). Since PT (CP) acts trivially in k, all three topological
indexes NR, NL, and ν belong to the same symmetry
class of Table I. Therefore, Eq. (15) determines the
number of subgap modes on the boundaries that are
perpendicular to the subsystems S2R=L (S1R=L). In general,
there may exist several topologically charged gapless
regions in the BZ, which leads to a set of equations of
the form Eq. (15) that determines the distribution of the
boundary modes [57].
To illustrate the above bulk-boundary correspondence,

we discuss the gapless modes on the (11) and (01) edges of

the lattice model of Eq. (12) [see Fig. 1(b)]. Consider point
A on the (11) edge BZ, which can be viewed as an end point
of the 1D subsystem i. Since i encloses an odd number of
nontrivial Z2 Fermi points, it has a nontrivial topological
index given by the geometric phase of the Berry con-
nection. Hence, a subgap state appears at the end point A. In
contrast, no edge state appears at point B of the (01) edge
BZ, since B is the end point of the subsystem ii, which
encloses an even number of nontrivial Z2 Fermi points
leading to a trivial topological index. This bulk-boundary
correspondence can be utilized in experiments to identify
PT (CP) invariant materials. In the SM [51] we present an
explicit calculation of these topological indices, confirming
the above analyses [58].
In closing, we note that by use of a bulk-boundary

correspondence analysis, the topological Fermi surfaces of
Table I can be interpreted as gapless boundary modes of
fully gapped TIs and TSCs with certain crystalline sym-
metries. To demonstrate this, let us consider a gapless dD
boundary of a ðdþ 1ÞD fully gapped TI and TSC. Since the
gapped bulk of the TIs and TSCs provides a physical
ultraviolet cutoff for the gapless boundary modes, the
nontrivial topological configuration of the TIs and TSCs
imprints itself on the ultraviolet behavior of the boundary
modes. To make this more explicit, let us assume that the
gapless boundary modes are Fermi points with codimen-
sion dc ¼ d − 1. The topological charge of these Fermi
points is determined by invariants that are defined on
ðd − 1ÞD spheres Sd−1 enclosing the Fermi points. In order
to establish a correspondence between the topological
charge of the boundary modes and the bulk topology of
the ðdþ 1ÞD TIs and TSCs, one must show that the two
have the same classifications, i.e., that the two classifica-
tions are mapped onto each other by a two-dimension shift.
For the strong TIs and TSCs of the tenfold way, such a two-
dimension shift arises since the involution due to T or C is
different for the Sdc spheres enclosing the boundary modes
and the bulk k space of the TIs and TSCs [35,51,59]. For
PT and CP symmetries, however, there is no such
involution difference between Sdc and the bulk k space
of the TIs and TSCs. Hence, the PT (CP) invariant Fermi
surfaces of Table I must be related to TIs and TSCs with a
symmetry different from PT (CP). Indeed, we find that the
classification of Table I is related to the classification of
ðdþ 1ÞD gapped band structures with the antiunitary
symmetries D ¼ TR and E ¼ CR, where R acts on the
TIs or TSCs as

R̂HTIðk; kdþ1ÞR̂−1 ¼ HTIð−k; kdþ1Þ; ð16Þ

and D and E restrict HTIðk; kdþ1Þ as

D̂HTIðk; kdþ1ÞD̂−1 ¼ HTIðk;−kdþ1Þ;
ÊHTIðk; kdþ1ÞÊ−1 ¼ −HTIðk;−kdþ1Þ: ð17Þ

(a) (b)

FIG. 1. (a) A small sphere (circle) (cyan) enclosing the gapless
point (ring) (red) can be deformed into two large spheres (circles)
(green) in the BZ. Note that the BZ is periodic in k. (b) Lattice
model with topological Fermi points (red) in its bulk BZ (light
green). The boundary BZs for the (11) and (01) edges are
indicated by blue lines.
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Note that R projected onto the boundary acts like an
inversion symmetry in the boundary BZ. The classifica-
tion of TIs and TSCs with symmetry Eq. (17) is given by
KR theory as KR−qðB1;d; S1;dÞ. It follows from the
relation [43,46]

KR−qðB1;d; S1;dÞ ≅ ~KO−qðSd−1Þ ð18Þ
that PT (CP) symmetric Fermi surfaces with codimen-
sion dc ¼ d − 1 have the same classification as ðdþ 1ÞD
TIs and TSCs with symmetry Eq. (17), which establishes
the promised exact bulk-boundary correspondence.
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