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The dynamics of a quantum phase transition are explored using slow quenches from the polar to the
broken-axisymmetry phases in a small spin-1 ferromagnetic Bose-Einstein condensate. Measurements of
the evolution of the spin populations reveal a power-law scaling of the temporal onset of excitations versus
quench speed as predicted from quantum extensions of the Kibble-Zurek mechanism. The satisfactory
agreement of the measured scaling exponent with the analytical theory and numerical simulations provides
experimental confirmation of the quantum Kibble-Zurek model.
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Symmetry-breaking continuous phase transitions play
important roles in many areas of physics including cos-
mology, particle physics, and condensed matter. When a
system is quenched across the critical point of a continuous
phase transition, the time scale characterizing the dynamics
diverges, and subsequent nonadiabatic evolution generally
gives rise to topological defect excitations. TheKibble-Zurek
mechanism (KZM) provides a general theory for under-
standing the nonequilibrium dynamics of these systems and
predicts a universal power-law scaling of the excitations as a
function of the quench rate with an exponent that is simply
related to the equilibrium critical exponents [1–5]. The KZM
was first introduced by Kibble in his study on the topology
of cosmic domains and strings in the early universe [1,2]; it
was later extended by Zurek [3–5] who suggested applying
these symmetry breaking ideas to laboratory accessible
condensed matter systems, including superconductors and
superfluids. This seminal work inspired a host of theoretical
[6–13] and experimental [14–34] investigations of KZ
scaling in thermodynamic (finite temperature) transitions;
for a recent review, see [35].
There is much current interest in extending the KZM to

continuous quantum phase transitions (QPTs), which are
zero temperature transitions driven by Heisenberg quantum
fluctuations rather than thermal fluctuations [36,37]. In
these transitions, a qualitative change in the ground state
occurs when a parameter in the Hamiltonian is varied
across the quantum critical point (QCP) at zero temper-
ature. There have been many theoretical proposals for
observing the KZM in a quantum phase transition [37–49];
however, thus far, only two experiments have investigated
the scaling of excitations with quench speed [50,51] in a
QPT, both using the Mott insulator to Bose-Hubbard
superfluid (SF) transition in optical lattices. In [50], the
excitations of a condensate were measured versus quench
speeds in a 3D lattice quenched into the SF phase, and
in [51], the temporal growth of the coherence length was
measured versus quench speed into the SF phase for
different lattice dimensionalities. Power law scaling was

observed in both experiments, but the measured exponents
did not agree with KZM analyses of the critical exponents
[35,52]. Furthermore, the measured dynamics in [51]
show complex behavior beyond power-law scaling that
indicate that the KZM model does not adequately capture
the underlying physics or, at best, could only be observed in
unrealistically slow quenches [52]. A particular challenge
for these experiments is that with the exception of the 1D
lattice investigated in [51], quantum simulations of the
realistic experimental conditions are beyond current capa-
bilities. Hence, there is strong motivation for additional
experimental investigations, ideally in simpler quantum
systems that permit direct comparison to theory.
Several theoretical investigations have suggested that

the polar (P) to broken-axisymmetry (BA) quantum phase
transition in spin-1 condensates would be a promising
platform for verifying the quantum KZM [44,45,53–56].
Although excitations following fast quenches have been
studied in a number of spinor Bose-Einstein condensate
(BEC) experiments [57–62] (including a recent paper that
observed the scaling of excitations versus quench depth in a
two-component BEC [63]), the scaling of the spin excita-
tions versus quench speed predicted by the KZM has not
been measured.
In this Letter, we investigate the KZM using small spin-1

87Rb condensates by measuring the evolution of the spin
populations during slow quenches from the polar phase.
The temporal onset of spin excitations show a power-law
dependence versus the quench speed with an exponent that
is within 15% of the prediction of the analytical KZM
model and in good agreement with quantum simulations of
the quench dynamics incorporating the measured exper-
imental conditions. A distinguishing feature of our KZM
investigation is that, unlike in spatially extended systems
where the KZM is manifest in topological defects,
the excitations in our experiment are constrained to the
temporal evolution of the spin populations because spin
domain formation is suppressed for small condensates.
This simplifies the complexity of the system and permits
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accurate quantum simulations to be performed using
realistic experimental parameters.
The spin dynamics of a small spin-1 BEC in a magnetic

field along the z axis can be described by the Hamiltonian:
Ĥ ¼ ~cŜ2 − ðq=2ÞQ̂z. The first term describes the spin
interactions, where ~c is the spin-dependent elastic collision
coefficient related to the s-wave scattering lengths for
collisions between pairs of atoms (~c < 0 for ferromagnetic
condensates), and Ŝ2 ¼ Ŝ2x þ Ŝ2y þ Ŝ2z is the total spin
vector operator. The second term describes the quadratic
Zeeman energy per particle. Q̂z is proportional to the spin-1
quadrupole moment, Q̂zz [61], and q ¼ qzB2 is the quad-
ratic Zeeman energy per particle, where B is the magnitude
of the magnetic field and qz ≈ 71.6 Hz=G2 (hereafter,
h ¼ 1). In terms of the mean-field expectation values,
the spin energy is

H ¼ c
2
S2 −

q
2
Qz; ð1Þ

where c ∝ ~c is the spinor dynamical rate andQz ¼ 2ρ0 − 1,
with ρ0 being the fractional population in the jF ¼ 1;
mF ¼ 0i state. The states of the system can be represented
on the fS⊥; Q⊥; Qzg unit sphere, where S2⊥ ¼ S2x þ S2y and
Q2⊥ ¼ Q2

xz þQ2
yz [61], as shown in Fig. 1.

The quantum critical point between the P and BA phases
occurs at qc ¼ 2jcj. Using Bogoliubov theory, it can be

shown that the BA phase (q < qc) ground state has three
excitation modes [64]. Two are gapless modes (in the long
wavelength limit) which arise from the SO(2) symmetry
breaking as predicted by the Goldstone theorem [65]; the
third mode has a nonzero eigenvalue, corresponding to
the energy gap between the ground and first excited state
[see Fig. 1(a)]

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2c − q2
q

∼ jqc − qj1=2; ð2Þ
where the approximation is valid near q ¼ qc.
A universal feature of QPTs is that, close to the critical

point, the properties of the system are uniquely described
by critical exponents determining the functional form of
the energy gap as a function of the parameters of the
Hamiltonian: Δ ∼ jgc − gjzν, where z, ν are the critical
exponents, g is the tuning parameter, and gc is the critical
point of the system [36]. Comparing to Eq. (2) shows that
zν ¼ 1=2 for the spin-1 system.
Because the energy gap Δ vanishes at the critical point

(ignoring finite-size effects), the system cannot cross the
critical point adiabatically. The utility of the KZM is that
it provides a universal prescription for quantifying the
dynamical excitation based on the exponents z, ν that govern
the equilibrium behavior of the system [3,38,45,66]. As
illustrated in Fig. 1(b), two characteristic time scales
can be compared to explain the behavior of the system
initialized in the ground state of one phase as it is driven
across the QCP. The first is the reaction time of the system to
changes in the Hamiltonian, which is inversely proportional
to the energy gap Δ. The second is Δ= _Δ, which describes
how fast the system is driven through the critical point. In our
experiment, the system is driven from the polar to the BA
phase. Close to the critical point, the reaction time is too large
for the evolution to be adiabatic, and the evolution shifts to
an impulse regime where the system remains frozen in the
polar ground state in the mean-field approximation. When
the two time scales become comparable again, the system
unfreezes and is now in an excited state. The dynamics
resume and the system is able to adiabatically evolve towards
the BA ground state.
The freeze out time t̂ between the crossing of the

critical point and the recovery of adiabatic evolution is a
function of the ramp speed and can be found from
Δ−1ðt̂Þ ¼ Δ= _Δjt¼t̂. For the case of linear ramps of the
control parameter of the Hamiltonian (q, in our case) in a
quench time τQ, then _q ∝ τ−1Q and the power-law relation

t̂ ∝ τνz=ð1þνzÞ
Q ¼ ταQ, where α ¼ 1=3, is obtained (see

Supplemental Material [67]). Introducing the dimension-
less ratio ~q ¼ q=jcj and defining q̂ as the change in ~q
between the crossing of the critical point and the resuming
of dynamics, a power law scaling can also be derived
for q̂ using the same approach as for t̂, which results in

q̂ ∼ ~τð−1=1þνzÞ
Q ¼ ~τβQ, where β ¼ −2=3 and ~τQ is the inverse

of the rate of change of ~q at the critical point.

(a)

(b)

FIG. 1. Concept: (a) The energy gap Δ between the ground
state and first excited state is plotted as a function of the quadratic
Zeeman energy q (in units of jcj). The gap vanishes at the critical
point qc ¼ 2jcj, shown by the vertical dashed line. The spheres
show the spin-nematic phase space for different values of q: (left)
broken-axisymmetry phase (q < 2jcj) and (right) polar phase
(q > 2jcj). The ground state in each phase is indicated with
red dots. (b) The “freeze-out” region for a given ramp speed
(blue shaded) is determined by the intersection of the minimum
response time (red) and the effective speed of the ramp (green).
See text for details.
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The experiments use small spin-1 87Rb atomic Bose
condensates in the F ¼ 1 hyperfine state confined in an
optical dipole trap. The condensates are initialized in the
mF ¼ 0 state in a high magnetic field, which is the polar
ground state [see Fig. 1(a), right]. The condensates are
quenched across the QCP at different speeds, and the onset
time (and corresponding value of q) for excitations from the
polar ground state are determined from the time evolution
of the mean value spin population ρ0 and the fluctuation
Δρ0. In Fig. 2(a), the results from several ramps are shown.
For each of these ramps, the field is first lowered quickly to
q0 ¼ 2.2jcj, and then ramped according to qðtÞ¼ q0− t=τQ
for a range of τQ values. For asymptotically slow ramps, the
population ρ0 should adiabatically follow the ground state
value ρ0;GS ¼ 1=2þ q=4jcj for q < qc ¼ 2jcj. From the
data in Fig. 2(a), it is clear that the population lags the
ground state value by an amount that increases for faster
ramps, indicating the nonadiabatic crossing of the QCP.
The determinations of t̂ and q̂ are shown in Fig. 2(b),

which shows both ρðtÞ and Δρ0ðtÞ for a typical quench.
To determine when the system “unfreezes,” thresholds of
ρ0 ¼ 0.99 and Δρ0 ¼ 0.005 are used. As pointed out in
[45], the exponent is insensitive to the choice of the exact
thresholds. The freeze-out time is t̂ ¼ tth − tc, where tc is
the time the system crosses the critical point and tth is where
ρ0 and Δρ0 reach their respective thresholds. q̂ is deter-
mined similarly to t̂, and is given by q̂ ¼ ~qðtthÞ − ~qðtcÞ. The
use of ~q allows us to incorporate the effect of the finite
lifetime of the condensate (∼2 s) in the data analysis. The

value q=jcj is affected by the reduction of density due to the
finite lifetime of the condensate, as the spin interaction
energy depends on the density and atom number as cðtÞ ∝
nðtÞ ∝ NðtÞ2=5 (see Supplemental Material [67]), which we
account for by using ~q ¼ qðtÞ=jcðtÞj.
In order to be able to extract accurate values for t̂ and q̂, it

is necessary to make a careful determination of qc ¼ 2jcj.
This is achieved by preparing the system in the polar
ground state and measuring the onset of fluctuations in ρ0
following a fast quench from a high field to a final field
value in the neighborhood of the critical field, Bc. For final
field values above Bc, the subsequent fluctuations are
negligible, but there is a sharp onset of fluctuations
below Bc. Using this approach, Bc is determined with an
uncertainty as low as 2 mG (Supplemental Material [67]).
To determine the scaling of the excitations as a function

of ramp speed, the values of q̂ are plotted versus ~τQ as in
Fig. 3. The data are fit to a power law, which reveals good
agreement, except for the slowest ramps (~τQ > 1.5), which
start to deviate from the fit. This is likely due to the large
amount of atom loss in this regime. The inset in Fig. 3
shows the same data in a log-log plot along with a linear fit
of the data between 0.04 < ~τQ < 1.5. This fit yields the
power law exponent β ¼ −0.80ð8Þ, where the quantity in
parentheses is 1 standard deviation. The data are compared
with simulations matching the experiment conditions (gray
shaded region), and the agreement is satisfactory. In
particular, the power law exponent determined from the
simulations is β ¼ −0.79ð7Þ. The experiment was repeated

(a) (b)

FIG. 2. Quench dynamics: (a) Measurements of ρ0 for different ramp times as a function of ~q ¼ q=jcj. The ramp times shown
correspond to the duration to ramp the magnetic field from ~q ¼ 2.2 to ~q ¼ 0. The longer ramps show evolution after a smaller change in
~q than the shorter ramps. For the latter, the system stays frozen in the polar phase ground state (ρ0 ¼ 1) until a larger change in ~q, as
expected from the KZM. The horizontal and vertical dashed lines indicate the ρ0 threshold and the critical point, respectively.
(b) Measurements of ρ0 (red squares) and its standard deviation Δρ0 (blue circles) during a typical experimental run where the magnetic
field is slowly ramped down through the critical point such that the q decreases linearly. The thresholds used to determine when the
system “unfreezes” are shown as horizontal dashed lines. The system shows good agreement with simulations (gray curves and
envelopes showing�1 standard deviation) for long evolution times beyond the freeze-out period. The top axis shows ~q, with the vertical
dashed line at ~q ¼ 2 marking the critical point. The dotted line indicates when the system crosses the determined threshold.
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multiple times over several months, and the results are
summarized in Fig. 4. The scaling exponents were deter-
mined from analyzing both ρ0 andΔρ0; the latter are shown
as blue markers (see Supplemental Material [67] for results
from all data sets). The fourth data set used a different trap
geometry—an elongated cigar-shaped trap, which benefits
from a longer lifetime of ∼15 s. Even though the con-
densate was no longer in the single mode approximation,
no spin domains were detected before the system crossed
the thresholds used to determine the freeze-out time, and
the measured β ¼ −0.80ð10Þ is also in good agreement
with simulations using the experimental settings.

The observed scaling exponents are self-consistent (within
experimental uncertainty) and agree well with the simula-
tions. They are, however, slightly more negative than the
−2=3 value derived above. To investigate this discrepancy,
we have performed simulations varying a wide range of
parameters including atom number, ramp speeds, initial
magnetic fields, and condensate lifetime (Supplemental
Material [67]).
Simulations performed in ideal conditions (infinite

condensate lifetime, high initial magnetic field, and large
number of atoms) yield β ¼ −0.67ð2Þ for very long ramps
(~τQ > 2), in excellent agreement with the value of −2=3
predicted by the KZM (see Fig. 4). However, for the faster
ramps that we can measure due to the finite lifetime of
the system, the simulations of the ideal case yield a more
negative result with β ¼ −0.76ð4Þ. The restriction of the
simple theory to the slowest ramps was pointed out in [45].
A second consequence of the lifetime of the condensate is
that it prevents starting the magnetic field ramps at a value
much higher than the critical point, since a large number of
atoms would be lost by the time the system crossed the
critical point. A compromise is reached experimentally by
starting with a fast drop from a high field ðq ¼ 17.1qcÞ to a
field closer to the critical point ðq ¼ 1.1qcÞ, followed
by slower ramps through the critical point. When we
include this experimental step in the simulations, we get
β ¼ −0.82ð4Þ, which agrees with the experimental results.
From our simulations, the effects of atom loss are not
important in the range of ramps that are used to determine
the scaling exponent.
In summary, we have observed the Kibble-Zurek mecha-

nism in spin-1 BEC quantum phase transition by measuring
the excitations as a function of the quench speed across the
quantum critical point. The results show power-law scaling
of the onset of the excitations that are in agreement with
theoretical predictions and, thus, provide experimental
confirmation of the KZM extended to quantum phase
transitions. In the future, it should be possible to explore
finite size (quantum) modifications to the KZM in the spin-
1 system by varying the system size; simulations performed
for different numbers of atoms (holding all other param-
eters constant) indicate that these effects should be observ-
able in our experiments.
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