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We propose and provide experimental evidence of a mechanism able to support negative intrinsic
effective mass. The idea is to use a shape-sensitive nonlinearity to change the sign of the mass in the leading
linear propagation equation. Intrinsic negative-mass dynamics is reported for light beams in a ferroelectric
crystal substrate, where the diffusive photorefractive nonlinearity leads to a negative-mass Schrödinger
equation. The signature of inverted dynamics is the observation of beams repelled from strongly guiding
integrated waveguides irrespective of wavelength and intensity and suggests shape-sensitive nonlinearity as
a basic mechanism leading to intrinsic negative mass.
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A negative energy density is thought to play a key role in
cosmological conjectures, such as in stabilizing space-time
wormholes and in explaining the supposed acceleration of
the expanding Universe. At present, there is no proposed
mechanism to support negative mass as a local space-time
property. We here describe a mechanism able to support
intrinsic negative mass through nonlinearity and provide
experimental evidence of inverted dynamics for a light
beam in a nanodisordered lithium-enriched potassium-
tantalate-niobate (KTN:Li) crystal waveguide. The effect
does not involve periodicity and, being intrinsic to the
beam, is not limited to specific directions or energies.
Negative-mass particles should be repelled fromattractive

potentials and attracted by repelling ones, an unfathomed
physics that could revolutionize our picture of nature,
rendering abstract conjectures, such as space-time worm-
holes, stable (at least in principle) [1,2]. With a massm < 0,
the particle subject to a potentialU suffers a forceF ¼ −∇U
but manifests the inverted acceleration a ¼ ∇U=jmj
(Fig. 1). Although all known particles have a positive or
zero mass, conditions can be found in which the interaction
of a particle with its environment leads to an effective mass
m� ≠ m that can, in specific conditions, also be negative. To
date, m� < 0 has been demonstrated in periodic systems
[3–7], where the periodicity in the ϵðkÞ band structure causes
there to be a finite region ofwavevectors forwhich theBloch
modes have a constant negative d2ϵ=dk2 < 0, and with it a
behavior described by a negative effective mass m� ¼
ℏ2ðd2ϵ=dk2Þ−1 < 0 [8]. Intuitively, internal components
move out of phase with respect to the global resonance of
the system and lead to a negative-momentum response for a
positive-momentum excitation [9]. Negative mass in these
periodic systems is not intrinsic to the particle or wave, but
only occurs for precise wave vectors at the edge of the
Brillouin zone.At present, nomechanismhas been proposed

or demonstrated to be able to support negative mass as a
property of a localized wave with inverted dynamics
irrespective of particle energy or wave vector.
Consider the Schrödinger equation

½i∂t þ ðℏ=2mÞ∇2�ψ ¼ ðV=ℏÞψ ; ð1Þ

wherem > 0. As an axiom, the SE is linear, but assume that
there is some mechanism that violates this linearity so that,
in general, the potential has two components: V þ Vnl, with
V just a standard potential and Vnl a specific form of self-
action. Indeed, although nonlinearity is absent in quantum
mechanics, it is naturally built into the Einstein equations
for which negative mass may have some important role. If
Vnl is a small local perturbation associated to jψ j2, such as a
Kerr effect with Vnl ∝ jψ j2, the SE turns into a nonlinear
Schrödinger equation that supports solitons and rogue

FIG. 1. Intrinsic inverted dynamics and a negative-mass Schrö-
dinger equation (SE). (Left) In contrast to a positive-mass particle
(lightly shaded sphere), a negative-mass particle (dark sphere)
will be attracted by a repelling potential and repelled by a binding
one. (Right) A propagating light beam described by a positive-
mass SE (lightly shaded beam) will be guided by an integrated
waveguide whereas a negative-mass light beam (dark beam) will
be repelled by it and scattered into the bulk of the substrate.
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waves, but for which no negative-mass dynamics emerges.
Nonlinearity, in turn, can take many forms and can also be
nonlocal, involving integrals and derivatives of jψ j2. If self-
action is approximated by Vnlψ ≃ ðℏ=2m0Þ∇2ψ, then this
will radically transform Eq. (1) into

½i∂t þ ðℏ=2m�Þ∇2�ψ ¼ ðV=ℏÞψ ð2Þ
that, when m0 < m, corresponds to a negative-mass SE
with m� ¼ mm0=ðm0 −mÞ < 0.
In our experiments we observe inverted dynamics in the

propagation of light in a nanodisordered ferroelectric with
the combined effect of an integrated slab waveguide and
diffusive photorefractive nonlinearity [10–12]. Paraxial
propagation along the z axis is governed by the parabolic
equation

½i∂z þ ð1=2kÞ∇2⊥�A ¼ −ðkΔn=n0ÞA; ð3Þ
where k ¼ k0n0, k0 ¼ 2π=λ, λ is the optical wavelength
(ω ¼ 2πc=λ), n0 is the unperturbed material index of
refraction, A is the slowly varying optical field, and the
local index of refraction is n ¼ n0 þ Δn. Equation (3) maps
into the 2þ 1D version of the SE of Eq. (2) for t≡ z=c,
ψ ≡ A, m� ≡ ℏk=c, and V ≡ −ℏcðkΔn=n0Þ. Hence, the
causal relationship between the index of the refraction
pattern and the paraxial propagation of a light beam is
equivalent to that of a particle with finite energy in an
appropriate potential. In other words, although photons
have no mass, the description of a light field inside an
inhomogeneous transparent material naturally leads to the
introduction of m� ≠ 0.
In our case, the index modulation has two distinct

components: Δn ¼ δnnl þ δn, where δnnl is the diffusive
nonlinear response caused by the propagating light, and
δnðrÞ, the index modulation of the fabricated slab wave-
guide. The diffusive nonlinearity is associated to the
electro-optic response δnnl ¼ −ðn30=2Þgϵ20χ2PNRjEdcj2 to
the optically induced space-charge field Edc, where g is
the quadratic electro-optic coefficient, ε0 is the vacuum
dielectric permittivity, and χPNR is the low-frequency
susceptibility of the polar nanoregions (PNRs) [13,14].
With no external bias, photoexcited charge diffusion causes
Edc ¼ −ðkBT=qÞ∇I=I, where kB is the Boltzmann con-
stant, T the crystal temperature, q the elementary charge,
and I ¼ jAj2 is the intensity of the optical field A. The
propagation equation now reads [11,12]

�
i∂z þ

1

2k
∇2⊥

�
A ¼ −

kδn
n0

Aþ 1

2k
L2

4λ2

�∇⊥I
I

�
2

A; ð4Þ

where L ¼ 4πn20ϵ0
ffiffiffi
g

p
χPNRðkBT=qÞ, that, for Gaussian-like

beams, is well approximated by the linear wave equation

½i∂z þ ð1=2kÞð1 − L2=λ2Þ∇2⊥�A ¼ −ðkδn=n0ÞA: ð5Þ

For L > λ, Eq. (5) maps to the 2þ 1D version of the SE
of Eq. (2) with

m� ¼ −
ℏk
c

1

L2=λ2 − 1
< 0: ð6Þ

The m� < 0 regime is here a product of nonlinearity, is
localized around the beam, and is not limited to specific
wavelengths, directions, or resonances of the system. We
note that the passage from the nonlinear Eq. (4) to the linear
Eq. (5) is rigorously valid only forGaussian beams forwhich
the peak intensity factors out of the term ð∇⊥I=IÞ.
Consistently, even though beams may be spreading or
becoming tighter during propagation, they will have only
one specific value ofm� [as per Eq. (6)]. Because the passage
to Eq. (5) is valid for Gaussian beam shapes, it follows that
the effective negative mass will arise only if the δn is
comparable or larger to the Gaussian beam itself. Fabricated
waveguides considerably smaller than the beam waist will
correspond to a potential well, as in Fig. 1, that is smaller
than the size of the particle itself andwill not necessarily lead
to inverted dynamics. A flag to this spatial requirement is
that Eq. (4) is spatially nonlocal whereas Eq. (5) is not.
We carry out experiments with the setup illustrated in

Fig. 2(a). An x-polarized TEM00 beam from a He-Ne laser
with (λ1 ¼ 633 nm) or from a doubled Nd:YAG laser
(λ2 ¼ 532 nm) is first expanded and subsequently focused
down onto the input facet of a sample of potassium-lithium-
tantalate-niobate doped with copper (KLTN:Cu) crystal
with a layer of Heþ ions implanted beneath its surface. The
crystal is grown by the top-seeding solution growth method
[15]. Its composition is determined by electron microprobe

(a)

(b) (c)

(d) (e)

(f) (g)
(h)

FIG. 2. Experimental setup, materials, and protocol. (a) A laser
beam is launched into the KTN:Li waveguide and imaged on a
CCD using lenses L1–L4 (L4 has NA≃ 0.35). (b) Waveguide
index profile (for 532 nm). (c) Typical graded waveguide
output intensity distribution for an expanded plane-wave input.
(d)–(g) Input and diffraction intensity distribution pattern in the
bulk crystal and in the waveguide (L=λ≃ 0). At a constant
TA ¼ 303 K, the 100-μW input beam (waist w0x ∼ w0y ¼ 8 μm)
(d) diffracts to 22 μm (e) after propagating a distance of
Lz ≃ 2.4 mm through the bulk crystal. In the waveguide, the
input beam (f) diffracts to w0x ¼ 9.8 μm and w0y ¼ 31.7 μm
(g). (h) Supercooling protocol TðtÞ to achieve L=λ > 1.
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analysis and is found to be K0.985Li0.015Ta0.63Nb0.37O3. The
copper concentration is determined by inductively coupled
plasma mass spectrometry and is found to be 68 ppm (in
weight). A sample of 3.9ðxÞ × 0.9ðyÞ × 2.4ðzÞ mm3 in size is
cut along the [001] crystallographic axis. The ferroelectric
phase transition of the sample is derived from dielectric
measurements, and is found to be at Tc ¼ 285 K. At the
operating temperature range of 286–305 K the sample
maintains high optical quality with refractive index of
n0 ¼ 2.3, and quadratic electro-optic coefficient
g ¼ 0.14 m4 C−2. The Heþ ions are implanted at
2.3 MeV with fluence of 0.8 × 1016 ions=cm2, which
yields a partially amorphous layer with refractive index
distribution as presented in Fig. 2(b) [16,17]. This forms a
slab waveguide between the surface of the sample and the
implanted layer that acts as the cladding [16]. The trans-
verse intensity distribution of the beam is imaged using a
CCD camera through the imaging lens. The diffraction
pattern at the output facet of the crystal with L=λ≃ 0, in the
bulk and in the slab waveguide, respectively, is shown in
Figs. 2(d)–2(g). In Fig. 2(h) we report the thermal shock
protocol TðtÞ near the peak in the dielectric response at
Tm ¼ 287.5 K [18–21] that allows a transient L=λ > 1. In
practice, the crystal is first cleaned of photorefractive space
charge by illuminating it with a microscope illuminator.
Using a temperature controller that drives the current of a
Peltier junction placed directly below the crystal in the y
direction, we bring the sample to thermalize at
TA ¼ 303 K. The sample is then cooled at the rate of
0.06 K=s to a temperature TD ¼ 287 K, where it is kept for
60 s. It is then reheated at a rate of 0.1 K=s to the operating
temperature (> TD) TB ¼ 290 K. The Peltier junction is
placed below the sample so that during the process the
crystal, exposed to ambient air (at ∼290 K), experiences a
transient temperature gradient along the y axis. Once TB is
reached and the temperature cycle TðtÞ is complete, we
switch on the laser beam, recording front view images of
the intensity distribution.
In Fig. 3(a) we report the basic signature of intrinsic

negative-mass SE dynamics: a beam expelled from
the fabricated waveguide and scattered into the substrate.
The beam is launched into the waveguide at t ¼ 0 after the
sample has undergone supercooling [the TðtÞ in Fig. 2(h)].
It is first observed to focus down, to antidiffract, and then to
suffer a strong repulsion, when it is scattered into the
metastable bulk. Ultimately, the beam is observed to relax
back into a linear diffraction, diffracting in the x direction
and guided in the y. The sequence of events is further
detailed in Fig. 3(b), where the beam peak intensity is
plotted versus time. For comparison, we include the same
curve when the same beam is launched into the bulk of the
substrate. In the slab the beam suffers a transient scattering,
whereas in the bulk it suffers antidiffraction dynamics
[22,23]. The connection between this transient repulsion
from the waveguide and the change in sign of the beam

mass in the equivalent SE is investigated in Fig. 3(c). Using
the bulk antidiffraction and the analytical antidiffraction
theory, L=λ as a function of time is evaluated. As expected,
the instants of time during which the dipolar relaxation
leads to L=λ > 1 coincide with the repulsive regime. In
other words, the behavior of the light beam is drastically
different between the guided and bulk conditions, as shown
in Fig. 3(b); in one case it leads to a strong repulsion and
scattering, and in the other to strong spatial localization.
The intensity distribution of input and antidiffracting light
corresponding to the L=λ > 1 stage before light is repelled
by the waveguide as reported in Figs. 3(d)–3(e).
To validate the negative-mass SE model of Eq. (5) we

repeated experiments for different intensities. The strong
transient response reported in Figs. 3 and 4 has a character-
istic response time of tens of seconds. Experiments using
beams with different powers (10, 20, 40, 80, and 100 μW)
lead to similar results and time scales. This approximate
intensity-independent nature of the phenomenon is com-
patible with the overall linear nature of the effect as
described in Eq. (2). Weak dependence of time scales on

(a)

(b) (c)

(d) (e)

FIG. 3. A fabricated waveguide repels light as it acquires an
intrinsic negative mass. (a) Time sequence of the output intensity
distributions for λ1 ¼ 633 nm. (b) Comparison between the
maximum peak intensity of the beam in the waveguide and in
the bulk during the transient. (c) Time dependence of the L=λ in
bulk. (d)–(e) Transient antidiffraction in the waveguide: the input
beam (waist w0x ¼ 9.9 μm, w0y ¼ 9.3 μm) (d) and the output
beam (minimum w0x ¼ 6.8 μm, w0y ¼ 7.1 μm, L=λ≃ 1.05)
during the aftershock (e).
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peak intensity indicates that time dynamics are principally
associated to the relaxation of the metastable PNR state,
while the photorefractive buildup is relatively faster and the
space-charge field can be considered at all times to be at
steady state, corroborating the validity of the diffusive
nonlinearity model. The value of the L parameter is
estimated by measuring the output and input waist ratio.
To prove the effect is not limited to a specific region of

wave vectors, in Fig. 4 we report beam repulsion for
λ ¼ 532 nm. The effect is analogous to the previous one,
even though the details of the time evolution vary for each
thermal shock, and only an average relaxation has a precise
dynamical meaning. Specifically, the estimated value of
L=λ in the two cases of Figs. 3 and 4 is comparable even
though the thermal shock is the same and the wavelengths
are different. Fluctuations are further exalted during the
transition from the diffractive positive-mass SE to the
antidiffractive negative-mass SE, as the waveguide goes
from being guiding to antiguiding and allows light to
explore its surroundings. An interesting difference in the
dynamics of Figs. 3 and 4 is that the shorter wavelength
case manifests a second focused stage reported in Fig. 4(e),
displaced outside the original waveguide, where no second
peak is found [Fig. 4(b)]. Specifically, the second peak is
displaced approximately 4 μm in the y direction, inside
the amorphous region [see Fig. 2(b)]. This indicates that the
antiguiding amorphous layer becomes guiding in the
negative-effective-mass regime. Unfortunately, the amor-
phous layer is only ≃1 μm wide and its effect on the beam
cannot be fully described by the passage from Eq. (4) to
Eq. (5). Congruently, for the longer-wavelength cases of
Fig. 3, no analogous effect is observed.
Numerical simulations of the stationary full-nonlinear

Eq. (4) are performed with a split-step Fourier method and

with parameters matching our experimental conditions
and slab-waveguide profile; results agree well with our
observations and are reported in Fig. 5. They allow us to
inspect the details of the propagation during evolution
[Fig. 5(a)–5(d)] that cannot be directly detected optically
and the resilience of the effect on distortions in the input
Gaussian beam shape [Fig. 5(e)]. In particular, the transition
from positive- to negative-mass dynamics is well repro-
duced as a function of ðL=λÞ, with the expulsion of the beam
from the waveguide to the substrate for ðL=λÞ > 1. We note
that this expulsion is fundamentally different with respect to
the phenomenon of soliton ejection and tunneling from a
potential where the refractive-index well is modified by the
nonlinear dynamics [24–26]. In our present phenomenon,
no available nonlinearity could even marginally modify the
huge fabricated index modulation (index modulations up to
δn≃ 0.15), and expulsion is a consequence of a change in
the sign of the effective mass of the light beam.
Further supporting experiments on the role of the

fabricated waveguide in the repulsion and scattering of
the antidiffracting light beam and on the propagation of
light during the ferroelectric-paraelectric phase-transition
are reported in the Supplemental Material [27].
We have discussed how a shape-sensitive nonlinearity

can lead to an intrinsic negative mass localized around a
wave without the constraints associated with a periodic
system or a resonance. We have shown an instance in
which light-matter interaction, instead of modifying the
nature of the propagation equation introducing nonlinear
terms that alter wave propagation and lead to solitons,
shock waves, and rogue waves [28–32], causes light to

(a)

(d) (e)

(b) (c)

FIG. 5. Numerical simulation of Eq. (4). Dynamics of the beam
along z (Lx ¼ 80 μm, Lz ¼ 2.4 mm, λ ¼ 633 nm) (a) for
ðL=λÞ2 ¼ 0.85 and (b) ðL=λÞ2 ¼ 1.05. (c) Output intensity dis-
tribution in the negative-effective-mass case. (d) Ratio of total
power scattered into the bulkPBulk to that retained by the slabPSlab

versus ðL=λÞ2. An effective positive mass is compatible with
PBulk=PSlab < 1, whereas a negative mass is compatible with
inverted dynamics and PBulk=PSlab > 1. (e) Dependence of in-
verted dynamics on beam shape: the PBulk=PSlab ratio for ever
more distorted and squared-off Gaussian inputs (exp ½−ðx2 þ y2Þ=
w2
0Þ − aðx4 þ y4Þ=w4

0�, w0 is the input beam width).

(a)

(c) (d) (e)

(b)

FIG. 4. Intrinsic negative-mass dynamics in the waveguide for
λ2 ¼ 532 nm. (a) Time sequence of the output intensity distri-
bution. (b) Maximum beam peak intensity in the waveguide
during the transient. (c)–(d) Antidiffraction in the waveguide:
(c) the input beam (waist w0x ¼ 6.8 μm, w0y ¼ 9.9 μm) and
(d) the output beam during the aftershock (minimum beam width
w0x ¼ 7.1 μm, w0y ¼ 5.6 μm, L=λ≃ 1.04). (e) Maximum beam
peak intensity of the output beam during the transient (see text).
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obey a modified linear propagation equation of the type
½i∂z − ð1=2~kÞ∇2⊥�A ¼ 0, with ~k > 0. The effect hinges on a
transient antidiffraction that is a product of nonlinearity and
requires no underlying periodic pattern, in distinction to
linear antidiffraction [33–36]. In these conditions, beam
propagation naturally maps the dynamics of a negative-
mass particle described by the Schrödinger equation with
m� ¼ −ℏ~k=c < 0, so that a fabricated waveguide with a
strong guiding index modulation δn=n ∼ 10%, amounting
to a strong binding potential, repels light instead of
attracting it. In distinction to previous studies into negative
mass, which focus on effective dynamics in periodic
potentials, our study here demonstrates a local mechanism
that provides negative mass compatible with basic negative-
mass conjectures, such as those required to stabilize space-
time wormholes.
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