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We present the first complete calculation of Z-boson production in association with a jet in hadronic
collisions through next-to-next-to-leading order in perturbative QCD. Our computation uses the recently
proposed N-jettiness subtraction scheme to regulate the infrared divergences that appear in the real-
emission contributions. We present phenomenological results for 13 TeV proton-proton collisions with
fully realistic fiducial cuts on the final-state particles. The remaining theoretical uncertainties after the
inclusion of our calculations are at the percent level, making the Z þ jet channel ready for precision studies
at the LHC run II.
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Introduction.—The production of a Z boson in associ-
ation with a jet is an important process for the physics
program of the Large Hadron Collider (LHC). It serves as a
background to searches for supersymmetry and for dark
matter in the mono-jet channel, and in measurements of
properties of the Higgs boson. The measurement of the
Z þ jet process can also be used to improve the determi-
nation of the gluon distribution function. For all of these
purposes a precision standard model prediction of this
process is highly desirable.
The next-to-leading order (NLO) corrections in the

strong coupling constant for Z þ jet production have been
known for some time [1]. The NLO electroweak correc-
tions were considered in Ref. [2]. First partial results for
next-to-next-to-leading order (NNLO) corrections to the
qg, qq̄, and gg partonic channels in the leading-color
approximation were recently presented [3]. However, none
of these results are suitable for precision phenomenology at
the LHC. The scale uncertainty of the NLO calculation is
comparable to the combination of all other experimental
systematic errors at high transverse momenta of the leading
jet [4,5]. Inclusion of partial NNLO corrections is a first
step to improve this situation, but even small partonic
channels can shift the distribution shapes in nontrivial
ways, in particular, at high transverse momentum [6]. A
complete calculation is highly desirable.
In this Letter we report on a complete calculation of

Z-boson production in association with a jet at NNLO in
perturbative QCD, including all partonic channels and
maintaining the full color dependence. We investigate
the effects of higher-order QCD corrections on the kin-
ematics of the Z boson, the leading jet, and the leptons

arising from the Z-boson decay in 13 TeV LHC collisions.
Fully realistic acceptance cuts are imposed on the final-
state particles. We find that the NNLO corrections are at the
percent level over most of the studied phase space, and have
minimal kinematic dependence.
Upon inclusion of electroweak corrections, the Z þ jet

channel will be ready for a precision comparison with the
upcoming data from the LHC run II.
To derive these predictions we use the recently proposed

N-jettiness subtraction technique [7,8], which has been
used to provide the first complete predictions for both
W-boson and Higgs boson production in association with a
jet at NNLO [7,9]. (The Higgs plus jet process has also
been calculated using other NNLO subtraction methods
[10–12].) We incorporate our results into a new version of
the MCFM program [13] to support NNLO calculations
using the N-jettiness framework. An interesting feature of
the computational algorithm used in this new version is that
it exhibits strong scaling to many thousands of nodes, and
can run on modern supercomputing platforms. This makes
possible calculations and phenomenological studies that
were previously intractable. We will discuss the details of
our approach in a longer future manuscript [14]. We plan to
publicly release an NNLO-enabled MCFM to facilitate
additional precision studies.
Theoretical framework.—We sketch here the N-jettiness

subtraction scheme. The implementation of this scheme
used in obtaining our results was presented in Ref. [7].
Another description of the method is also given in Ref. [8].
We begin with the definition of the N-jettiness variable

T N , a global event shape designed to veto final-state
jets [15]:
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T N ¼
X
k

mini

�
2pi · qk
Qi

�
: ð1Þ

The subscript N denotes the number of jets desired in the
final state; for the Z þ jet process considered here, N ¼ 1.
Values of T 1 near zero indicate a final state containing a
single narrow energy deposition, while larger values denote
a final state containing two or more well-separated energy
depositions. The pi are lightlike reference vectors for each
of the initial beams and final-state jets in the problem. The
reference vectors for the final-state jets can be determined
by using a jet algorithm, as discussed in Refs. [15,16]. The
determination of the pi is insensitive to the choice of jet
algorithm in the small-T cut

N limit [15]. The qk denote the
four-momenta of any final-state radiation. The Qi charac-
terize the hardness of the beam jets and final-state jets. We
set Qi ¼ 2Ei, twice the lab-frame energy of each jet.
We briefly outline the procedure through which we use

T N to obtain the complete NNLO correction to the Z þ jet
process. The NNLO cross section consists of contributions
with Born-level kinematics, and processes with either one
or two additional partons radiated. We partition the phase
space for each of these terms into regions above and below
a cutoff on T N , which we label T cut

N :

σNNLO ¼
Z

dΦN jMN j2 þ
Z

dΦNþ1jMNþ1j2θ<N

þ
Z

dΦNþ2jMNþ2j2θ<N þ
Z

dΦNþ1jMNþ1j2θ>N

þ
Z

dΦNþ2jMNþ2j2θ>N
≡ σNNLOðT N < T cut

N Þ þ σNNLOðT N > T cut
N Þ: ð2Þ

We have abbreviated θ<N ¼ θðT cut
N − T NÞ and θ>N ¼

θðT N − T cut
N Þ. The first three terms in this expression

all have T N < T cut
N , and have been collectively denoted

as σNNLOðT N < T cut
N Þ. The remaining two terms have

T N > T cut
N , and have been collectively denoted as

σNNLOðT N > T cut
N Þ. Contributions with Born-level kin-

ematics necessarily have T N ¼ 0. Similar partitionings
of phase space have proven useful in the context of merging
fixed-order calculations with parton showers in the effec-
tive-theory framework [17].
The critical point that allows us to compute the cross

section to NNLO below T cut
N is the existence of a

factorization theorem that gives an all-orders description
of N jettiness for small T N [18,19]. Using this result, the
cross section with T N less than some value T cut

N can be
written in the schematic form

σðT N <T cut
N Þ¼

Z
H⊗B⊗B⊗S⊗

�YN
n

Jn

�
þ…: ð3Þ

H is the hard function which encodes the virtual corrections
to the process. B is the beam function, which describes the

effect of radiation collinear to one of the two initial beam
directions. The general importance of the beam function in
describing hadronic collisions was first realized in
Ref. [18]. It can be decomposed as a perturbative matching
coefficient convolved with the usual parton distribution
function. S describes the soft radiation, and Jn contains the
radiation collinear to a final-state jet. Depending on the
observable and process under consideration, only a subset
of these terms may be present. The ellipsis denotes power-
suppressed terms which become negligible for T N ≪ Qi.
The derivation of this all-orders expression in the small-T N
limit uses the machinery of soft-collinear effective theory
[20]. Upon expansion to fixed order in the strong coupling
constant, Eq. (3) reproduces the fixed-order cross section
σNNLOðT N < T cut

N Þ for low T cut
N needed in Eq. (2). The

two-loop virtual corrections needed for the NNLO hard
function are known for the Z þ jet process [21,22]. [We
clarify here an unclear point in Ref. [21]: to obtain the
virtual corrections for all helicity amplitudes, only the
spinor products should be conjugated in Eqs. (2.24–2.25),
not the α, β, and γ coefficients.] The beam functions are
known at NNLO [23], as are the jet functions [24] and the
soft function [25].
A full NNLO calculation requires as well the high T N

region above T cut
N . However, a finite value of T N implies

that there are actually at least N þ 1 resolved partons in the
final state. The cross section above the cut can be obtained
from a NLO calculation containing an additional jet. We
must choose T cut

N much smaller than any other kinematical
invariant in the problem in order to avoid power corrections
to Eq. (3) below the cutoff. We discuss the validation of the
explicit T cut

N values used in our numerical results in a later
section.
Validation of the formalism.—We now discuss how we

obtain the various components of Eq. (2) needed to obtain
the complete cross section at NNLO. Above T cut

N we need a
NLO calculation of Z þ 2 jets. We use an improved version
of MCFM [13] optimized to handle the N-jettiness sub-
traction scheme to obtain this contribution efficiently. Upon
integration over the phase space of the final-state leptons,
we can check our implementation of the hard function
against PeTeR [26]; we have done so and have found
perfect agreement. The calculation and validation of the
necessary N-jettiness soft function has been detailed in a
separate publication [25]. The necessary two-loop beam
and jet functions for this process are also known [23,24].
The primary check of the N-jettiness formalism is that

the logarithmic dependence on T cut
N that occurs separately

in the low and high T N regions cancels when they are
summed. This requires that almost all parts of the calcu-
lation are implemented correctly and consistently; the
beam, soft, and jet functions, as well as the NLO correc-
tions to Z þ 2-jets, are probed by this check. We show in
Fig. 1 the results of this validation for the ratio σNNLO=σNLO
in 13 TeV proton-proton collisions. We have checked that
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the NLO cross section obtained withN-jettiness subtraction
agrees with the result obtained with standard techniques.
These cross sections are obtained using CT14 parton
distribution functions [27] at the same order in perturbation
theory as the partonic cross section, and contain the
following fiducial cuts on the leading final-state jet and
the two leptons from CMS [5]: pjet

T > 30 GeV, jηjetj < 2.4,
pl
T > 20 GeV, jηlj < 2.4 and 71 GeV < mll < 111 GeV.

The ATLAS analysis is similar but with slightly
different cuts [4]. We reconstruct jets using the
anti-kT algorithm [28] with R ¼ 0.5. A dynamical

scale μ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ll þ
Pðpjet

T Þ2
q

is chosen to describe this

process, where the sum is over the transverse momenta
of all final-state jets, and mll the invariant mass of
the dilepton pair arising from the Z-boson decay. We
note that for the results presented in this Letter, we have
set μR ¼ μF. In a recent work that studies the processes
W þ jet and Z þ jet [29], we have allowed μR and
μF to vary independently subject to the constraint
1=2 < μR=μF < 2. For both processes we find that this
variation has minimal impact on the theory uncertain-
ties. In this validation plot we have set the renormaliza-
tion and factorization scales to μR ¼ μF ¼ 2 × μ0; since
the corrections are larger for this scale choice, it is easier
to illustrate the important aspects of the T cut

1 variation.
A few features can be seen in Fig. 1. First, in the region

T cut
1 < 0.2 GeV the result becomes independent of the

particular value of the cut chosen within the numerical
errors. The NNLO correction for μ ¼ 2 × μ0 corresponds to
a þ3% shift in the cross section. The plot makes clear
that we have numerical control over the NNLO cross
section to the per-mille level, completely sufficient for
phenomenological predictions. We observe an approxi-
mately linear dependence of σNNLO on T cut

1 in the region
0.2 GeV < T cut

1 < 0.5 GeV, indicating the onset of the
power corrections neglected in Eq. (3). These power
corrections have the form ðT N=QÞ lnnðT N=QÞ, where
n ≤ 3 at NNLO [8] and Q is a hard scale such as pjet

T .

The other possible checks of the N-jettiness formalism
involve comparison with other NNLO results obtained
using different techniques. We have previously checked
that the agreement between Higgsþ jet production as
computed with N-jettiness and with other techniques
[10] agree at the per-mille level [9]. A selection of
processes without final-state jets has also been computed
with both N-jettiness subtraction and other techniques, and
shows a similar level of agreement [8,14].
Numerical results.—We present here numerical results for

Z-boson production in association with a jet at NNLO. Our
central scale choice is the dynamical scale μ ¼ μ0, as
described in the previous section. We note that for a fixed
scale choice μR ¼ μF ¼ MZ, the change in the fiducial cross
section numbers fall within the scale uncertainty bands
presented here. We leave the study of other dynamical scale
choices such asHT to a more detailed future study. To obtain
an estimate of the theoretical errors we vary μ away from the
central value μ0 by a factor of 2. We use the same cuts on the
jets and leptons as described in the previous section. We
include the contributions from both the Z boson and a virtual
photon decaying to leptons in our numerical results.
We note that the cross sections at each order in

perturbation theory for the cuts described above are

σLO ¼ 97:4þ3.9
−4.4 pb;

σNLO ¼ 133:3þ5.4
−4.2 pb;

σNNLO ¼ 134:2þ0.0
−0.6 pb: ð4Þ

The NNLO correction results in an almostþ1% increase in
the fiducial cross section. The scale dependence is greatly
reduced with respect to the NLO result. We note that the
full NNLO corrections are smaller than the leading-color
results for a subset of the contributing partonic channels
found in Ref. [3]. We next show the Z-boson transverse
momentum distribution in Fig. 2, focusing on the range
pZ
T < 500 GeV. The distributions at LO, NLO, and NNLO

in QCD perturbation theory are shown, as are the usual K
factors: the ratio of the NLO over the LO cross section, and
the NNLO over the NLO result. To produce this distribu-
tion and all other ones, we average the results from
T cut

1 ¼ 0.05, 0.06, 0.07, and 0.08 GeV. A reduced scale
dependence is obtained when the NNLO corrections are
included, and a significantly smaller correction is observed
when going from NLO to NNLO than when going from LO
to NLO, indicating stability of the perturbative expansion.
A slight increase of the NNLO correction occurs as pZ

T is
increased. The analogous transverse momentum distribu-
tion for the leading jet is shown in Fig. 3. In this case the
NLO corrections grow with pjet

T , reaching a K factor of 2.5
for pjet

T ¼ 500 GeV. The NNLO corrections are far more
mild, but they grow with pjet

T , increasing the NLO result by
10% at pjet

T ¼ 500 GeV.
We now study distributions of the lepton that comes from

the Z → lþl− decay; the antilepton distributions are similar.

FIG. 1. Plot of the NNLO cross section over the NLO result,
σNNLO=σNLO, as a function of T cut

1 , for the scale choice
μ ¼ 2 × μ0. The vertical bars accompanying each point indicate
the integration errors.
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The lepton transverse momentum distribution at LO, NLO,
and NNLO in QCD perturbation theory is shown in Fig. 4.
We focus on the range pl−

T ≤ 180 GeV due to the small cross
section at higher transverse momenta. There is again a
reduction of the scale uncertainty to the percent level when
the NNLO corrections are included. The NNLO corrections
rise slightly as pl−

T is increased. The variation of theK factors
that appears for low-pl−

T arises from the leading-order
kinematic restriction that pZ

T > 30 GeV, which occurs
because of the pjet

T > 30 GeV cut. This in turn restricts
the allowed values of pl−

T that can occur. This restriction is
lifted at NLO when additional radiation is present, but leads
to large corrections near the LO kinematic boundary. Finally,
we show in Fig. 5 the rapidity distribution of the lepton. The
kinematic variation of the K factor is small at both NLO and
NNLO, with the corrections being a constant þ40% shift at
NLO and nearly zero at NNLO. Although not shown

explicitly here, we find a similar pattern of corrections for
the jet and Z-boson rapidity distributions.
Before concluding, we comment briefly on some com-

putational aspects of our calculation. It was recently shown
that a multithreaded version of the Vegas integration
algorithm [30] could significantly reduce the time needed
to obtain NLO cross sections [31]. We have extended this
parallelization to use the MPI protocol in order to allow
communication between the separate nodes present on
modern computing clusters. Numerical tests on the Mira
supercomputer at the Argonne Leadership Computing
Facility and at the NERSC facility at Berkeley show that
our code exhibits strong scaling to the several-thousand
node level. We anticipate that the techniques we have
developed will become increasingly important for theo-
retical predictions to match the ever-improving quality and
precision of high energy collider data.

FIG. 2. Plot of the Z-boson pT distribution at LO, NLO, and
NNLO in QCD perturbation theory, for 13 TeV collisions with

the central scale μ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ll þ
P

pjet;2
T

q
. The K factors are shown

in the lower inset.

FIG. 3. Plot of the leading-jet pT distribution at LO, NLO, and
NNLO in QCD perturbation theory, for 13 TeV collisions with

the central scale μ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ll þ
P

pjet;2
T

q
. The K factors are shown

in the lower inset.

FIG. 4. Plot of the lepton pT distribution at LO, NLO, and
NNLO in QCD perturbation theory, for 13 TeV collisions with

the central scale μ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ll þ
P

pjet;2
T

q
. The K factors are shown

in the lower inset.

FIG. 5. Plot of the lepton rapidity distribution at LO, NLO, and
NNLO in QCD perturbation theory, for 13 TeV collisions with

the central scale μ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ll þ
P

pjet;2
T

q
. The K factors are shown

in the lower inset.

PRL 116, 152001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

15 APRIL 2016

152001-4



Conclusions.—In this Letter we have presented the
complete NNLO corrections to the Z þ jet process in
hadronic collisions. Our calculation utilizes the N-jettiness
subtraction scheme, which has proven to be a powerful tool
for obtaining higher-order QCD cross sections. We have
given phenomenological results for 13 TeV LHC collisions.
The NNLO corrections are small throughout most studied
regions of phase space, and are at or below the percent level
for pT values up to 100 GeV. However, they reach up to 10%
in the tails of the jet and Z-boson transverse momentum
distributions, and must be included in any comparison of
theory with experiment in this region. The corrections to the
rapidity distributions of the jet, Z boson, and leptons are flat,
and are at or below the few-percent level for all scale choices.
The Z þ jet prediction exhibits an extremely stable pertur-
bative expansion, and upon inclusion of the complete NNLO
QCD corrections presented here as well as the electroweak
corrections from Ref. [2] will be ready for a precision
comparison with LHC run II data.
The N-jettiness subtraction scheme has now been

applied to obtain the complete NNLO results for several
important LHC processes. One great virtue of this approach
is its simplicity: all complications associated with the
double-unresolved singular limit of QCD are handled by
the factorization theorem of Eq. (3). Another advantage
of this approach is the ease with which the necessary
numerical integrations can be efficiently run on massively
parallel computing platforms. Only the real-radiation
integration in the region T N > T cut

N is computationally
expensive. The calculational method scales to the largest
available computing platforms. The conceptual appeal,
simplicity and computational advantages of N-jettiness
subtraction will make it a powerful tool whenever precision
predictions for scattering processes are required.
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