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The distribution of coherence in multipartite systems is examined. We use a new coherence measure with
entropic nature and metric properties, based on the quantum Jensen-Shannon divergence. The metric
property allows for the coherence to be decomposed into various contributions, which arise from local and
intrinsic coherences. We find that there are trade-off relations between the various contributions of
coherence, as a function of parameters of the quantum state. In bipartite systems the coherence resides on
individual sites or is distributed among the sites, which contribute in a complementary way. In more
complex systems, the characteristics of the coherence can display more subtle changes with respect to the
parameters of the quantum state. In the case of the XXZ Heisenberg model, the coherence changes from a
monogamous to a polygamous nature. This allows us to define the shareability of coherence, leading to
monogamy relations for coherence.
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The concept of wave particle duality introduced the
importance of quantum coherence in physical phenomena
such as low temperature thermodynamics [1], quantum
thermodynamics [2–4], nanoscale physics [5], and biologi-
cal systems [6,7], and is one of the most basic aspects of
quantum information science [8]. For this reason, under-
standing quantum coherence has a long history and is of
fundamental importance to many fields. In quantum optics
[9,10], the approach has been typically to examine quan-
tities such as phase space distributions and higher order
correlation functions [11]. While this method distinguishes
between quantum and classical coherence, it does not
quantify coherence in a rigorous sense. More recently, a
procedure to quantify coherence using methods of quantum
information science was developed [12–15]. In the seminal
work of Ref. [12], basic quantities such as incoherent states,
incoherent operations, and maximally coherent states were
defined and the set of properties a functional should satisfy
to be considered as a coherence measure were listed.
One fundamental task that is desirable is to pinpoint what

part of a quantum system is responsible for any coherence
that is present. To understand the possibilities, let us consider
a two qubit system as an example. Coherence is a basis-
dependent quantity [15,16], and the reference incoherent
states are chosen as j0i; j1i. We can consider then two types
of states that possess coherence, ðj0i − j1iÞðj0i − j1iÞ and
j0ij0i − j1ij1i. In the former, the coherence lies on each
qubit, while the latter has a kind of collective coherence, i.e.,
entanglement. An interesting aspect of this is that the types
of coherence are complementary to each other—an increase
in one type leads to a corresponding decrease in the other. In

order to have maximum coherence on a particular qubit, it is
optimal to create a superposition on each one, which
excludes entanglement. On the other hand, for the Bell
state, tracing out one of the qubits leaves a completelymixed
(incoherent) state on the other qubit.
This complementary behavior is reminiscent of another

quantum feature, monogamy of entanglement, which has
attracted a lot of attention recently [17–21]. Monogamy is a
concept related to the shareability of entanglement between
different constituents in amultipartite system.For example, in
a tripartite system, if Alice and Bob have a maximally
entangled state, then this rules out entanglement to Charlie.
The monogamy relation for three qubits was introduced in
Ref. [17], and has also been generalized to multipartite
systems [19]. Both of these examples illustrate the trade-
off nature of quantum mechanical features, where increasing
one imposes restrictions on the other. Another fundamental
question that this raises is the relationship between coherence
and entanglement [15,16]. The framework outlined in
Ref. [12] closely followed the format of entanglement
quantification developed in Refs. [22–24]. While entangle-
ment is clearly a form of coherence, the converse is not
necessarily true. In this Letter we explore the question of how
we can quantify various types of coherence and examine their
trade-off relations within a multipartite system. By under-
standing the distribution of coherence in a multipartite
system, this leads us to find the relation between concepts
such as coherence, entanglement, and monogamy.
One of the tools that we will use in this study is a

coherence measure which has both entropic and geometric
properties. In Ref. [12], two different functionals, one based
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on the relative entropy and the other based on the l1

norm, were found to satisfy the necessary properties as a
coherence measure. Of these, the former is an entropic
measure while the other is a geometric measure that can be
used as a formal distance measure. Any measure D is
considered as a formal distance over the setX if∀ ρ; σ ∈ X it
satisfies the following properties: (i) Dðρ; σÞ > 0 for ρ ≠ σ
andDðρ; ρÞ ¼ 0, and (ii)Dðρ;σÞ¼Dðσ;ρÞ (symmetry). IfD
satisfies (iii) Dðρ;σÞþDðσ;τÞ≥Dðρ;τÞ (the triangle
inequality) in addition to the properties given above, then
D is a metric for the spaceX. The relative entropy Sðρ∥σÞ≡
Trρ logðρ=σÞ is not a distance since it is asymmetric and
further it is well defined only when the support of σ is equal
to or larger than that of ρ. Towards this end, we introduce
here an alternative, the quantum version of the Jensen-
Shannon divergence (QJSD):

J ðρ; σÞ ¼ 1

2
½Sðρ∥ðρþ σÞ=2Þ þ Sðσ∥ðρþ σÞ=2Þ�: ð1Þ

TheQJSD is known to be a distance measure, to be bounded
0 ≤ J ≤ 1, and is well defined irrespective of the nature of
the support of ρ and σ [25–27]. The QJSD does not obey the
triangle inequality, but its square root obeys it for all pure
states. In the case of mixed states there is no general proof of
the triangle inequality, but numerical studies up to five qubits
[27] strongly indicate its validity.
Quantum coherence trade-offs.—The quantum coher-

ence is defined as [12]

CðρÞ≡ min
σ∈I ðbÞ

Dðρ; σÞ; ð2Þ

where D is a distance measure and I ðbÞ are the set of
incoherent states in a particular basis b. The functional C is
a quantum coherence measure if it obeys the properties [12]
(i) CðρÞ ≥ 0 and CðρÞ ¼ 0 iff ρ ∈ I ðbÞ, (ii) CðρÞ is invariant
under unitary transformations, (iii) CðρÞ is monotonic under
an incoherent completely positive and trace preserving
map, (iv) CðρÞ is monotonic under selective incoherent
measurements on average, and (v) CðρÞ is nonincreasing
under mixing of quantum states (convexity).
Equation (2) states that the amount of coherence in a

given state is the distance to the closest incoherent state.
This definition clearly depends on what we deem to be an
incoherent state, and is responsible for the basis-dependent
nature of C. Most generally, one may assume a form for an
incoherent state σ ¼ P

kpkjbkihbkj, where the fjbkig are a
fixed particular basis choice b and pk are probabilities.
Without the constraint of the fixed basis, it is always
possible to write σ ¼ ρ by taking jbki to be eigenvectors of
ρ, which immediately gives C ¼ 0. In this Letter we are
interested in how the overall coherence is distributed in a
multipartite system. For this reason it will be most
interesting to choose a local basis choice,

σ ¼
X
k

pkτ
ðbÞ
k;1 ⊗ � � � ⊗ τðbÞk;N; ð3Þ

where τðbÞk;n is the incoherent state on the subsystem n; i.e.,
τðbÞk;n ¼

P
kpk;njbk;nihbk;nj. The set of states that are sepa-

rable and in a basis b are called I ðbÞ
S .

This gives a natural way to study various coherence
contributions within a multipartite system. As discussed
above, we can distinguish between coherence that is
localized on the subsystems n and collective coherence,
which cannot be attributed to particular subsystems [see
Fig. 1(a)]. To remove the contribution from the subsystems,
we may relax the basis constraint b and minimize over the
set of states Eq. (3). This contribution is independent of
the basis choice, and is the coherence that is intrinsic within
the system. We thus define the intrinsic coherence,

CIðρÞ≡ min
σS∈IS

Dðρ; σSÞ; ð4Þ

where IS is the set of states of the form as given in Eq. (3),
but is not necessarily in the basis b. Thus the only
constraint here is the general form of the basis, that it is
separable, but the particular basis is not specified.
Equation (4) is in fact equal to the entanglement, which
is reasonable from the point of view that entanglement must
contribute to coherence [15]. The remaining contribution
then originates from coherence that exists on the subsys-
tems, and we can write the local coherence as

CLðρÞ≡Dðσmin
S ; ρdÞ; ð5Þ

where σmin
S and ρd are the minimum solutions of Eqs. (4)

and (2), respectively, and are implicit functions of ρ.
We may visualize the two different contributions accord-

ing to Fig. 1(b). According to the metric properties of D,
and the triangle inequality, we immediately see that

C ≤ CL þ CI: ð6Þ

For a product state σmin
S , the coherence measure is sub-

additive, which leads to CL ≤
P

nCL;n. We thus have

C ≤
XN
n¼1

CL;n þ CI; ð7Þ

where CL;n is the coherence on each subsystem n separately.

FIG. 1. Quantum coherence in multipartite systems. (a) The
total coherence C has contributions from local coherence CL on
subsystems and collective coherence CI . (b) Definitions of
various coherences according to the distance between states.
IS is the set of separable states, while I

ðbÞ
S is the set of separable

states in a fixed basis b. ρd is the solution of Eq. (2) and σmin
S is the

solution of Eq. (4).
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An illustrative example of the coherence decomposition
is given by the ground state of the N ¼ 2 Ising model
described by the Hamiltonian

H ¼ λσx1σ
x
2 þ Jðσx1 þ σx2Þ þ ϵλðσz1 þ σz2Þ; ð8Þ

where J, λ are coupling parameters and ϵ is a small
symmetry-breaking term. The numerically estimated values
of CL, CI, and C are given in Fig. 2(a), where we use the
square root of the Jensen-Shannon divergence as our
distance measure,

Dðρ; σÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðρ; σÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

�
ρþ σ

2

�
−
SðρÞ
2

−
SðσÞ
2

s
;

where SðρÞ ¼ −Trρ log ρ is the von Neumann entropy.
Taking the fj0in; j1ing basis as the reference state (this will
be the case throughout this Letter), we see that there is a
crossover between coherence contributions from intrinsic
when J ≪ λ to local as J ≫ λ. This is due to the fact that for
J ¼ 0; ϵ → 0 the ground state approaches a Bell state
j00i − j11i, and for λ ¼ 0 the ground state is
ðj0i − j1iÞðj0i − j1iÞ, with intermediate J=λ giving an
interpolation to these limits. The total coherence is less
than the sum of the local and intrinsic contributions,
following Eq. (6).
Multipartite coherence.—The bipartite case studied

above is the simplest case of more general trade-off
relations in multipartite systems. One of the fundamental
properties we investigate is the shareability of coherence
between subsystems. For example, in a tripartite system
ρ123 we may decompose the coherence using Eq. (6)
according to

C123 ≤ C1 þ C2 þ C3 þ C1∶2∶3; ð9Þ

where we have introduced a shorthand for the local
coherence on subsystem n as Cn ¼ CL;nðρnÞ, and ρn is
the reduced density matrix. For the product states σmin

S
Eq. (9) holds exactly. The intrinsic coherence C1∶2∶3 ¼
CIðρ123Þ is minimized over the set of separable states on the
tripartite system. We note that as C1∶2∶3 is an intrinsic
coherence, it does not contain any coherence located on the
sites, but contains all coherences between the sites.
We can decompose a tripartite system in a bipartite

fashion, leading to the relation

C123 ≤ C1 þ C2 þ C3 þ C2∶3 þ C1∶23; ð10Þ

where we first find the intrinsic coherence between 2 and 3,
then we estimate the intrinsic coherence between 1 and the
bipartite subsystem 23. Similar decompositions can be
carried out with respect to the bipartitions 2∶13 and 3∶12 as
well. From Eqs. (9) and (10) and the other possible
bipartitions suggested above, we may deduce that

C1∶2∶3 ≃ C2∶3 þ C1∶23 ≃ C1∶2 þ C12∶3 ≃ C1∶3 þ C13∶2: ð11Þ

To illustrate the various contributions, first let us con-
sider the mixed Greenberger-Horne-Zeilinger (GHZ) states
defined as ρGHZ ¼ ð1 − μ=8Þ1̂þ μjGHZihGHZj, with
jGHZi ¼ cosϕj000i þ sinϕj111i, ϕ ∈ ½0; 2πÞ, and
0 ≤ μ ≤ 1. The coherence is plotted in Fig. 2(b). For this
class of states we find that the various contributions due to
one and two sites are always zero: Cn ¼ Cm∶n ¼ 0. This
means that the only coherence contributions originate from
the intrinsic coherence where all three sites are involved.
The total coherence is thus identical to the tripartite
coherence C ¼ C1∶2∶3, which is verified numerically. It is
also equal to the bipartitioned intrinsic coherence
C ¼ Cl∶mn, where l, m, n are all permutations of the sites.
This verifies the relation Eq. (11) for this class of states.
In contrast to the GHZ state where there is only one

coherence contribution, the W states have a trade-off
relation similar to that seen in the transverse Ising
model. These are defined as jWi ¼ sin θ cosϕj100iþ
sin θ sinϕj010i þ cos θj001i, with 0 ≤ ϕ < 2π and
0 ≤ θ ≤ π. The GHZ and W states are two classes of
states that are unrelated under local operations and classical
communications. From Fig. 2(c) we see that the calculated
coherence can be attributed to several contributions. First,
the coherence C12∶3 is always constant as the state for the
choice θ ¼ π=4 can be written as jWi ¼ ½ðcosϕj10iþ
sinϕj01iÞj0i þ j00ij1i�= ffiffiffi

2
p

; thus, there is always intrinsic
coherence between the bipartition of sites 12 and 3. The
coherences C1∶3 and C2∶3 show complementary behavior as
the system oscillates between a Bell state between sites 13
(ϕ ¼ nπ) and 23 [ϕ ¼ ðnþ 1=2Þπ], with the remaining site

FIG. 2. Coherence as measured by the quantum Jensen-
Shannon divergence for various states. Coherence of (a) the
N ¼ 2 site Ising model with ϵ ¼ 0.2, (b) the Werner GHZ state,
(c) the W state with θ ¼ π=4, and (d) the N ¼ 10 site XXZ
Heisenberg model ground state with J ¼ 1. Inset: Monogamy for
the XXZ Heisenberg model as defined in Eq. (14).
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being decoupled. The coherence between the sites 12 (C1∶2)
has twice the oscillatory frequency of C1∶3 and C2∶3.
The same ideas can be equally applied to more complex

multipartite systems. The various coherence contributions
can be used to understand the nature of the quantum states
in quantum many-body systems. We illustrate this by
analyzing the one-dimensional Heisenberg XXZ model,
one of the fundamental models in magnetism. The
Hamiltonian of this model is

H ¼ J
X
n

ðσxnσxnþ1 þ σynσ
y
nþ1 þ Δσznσznþ1Þ; ð12Þ

where J is the nearest neighbor spin coupling and Δ is the
anisotropy parameter. For an antiferromagnetic coupling
J > 0, the system has a phase transition from the ferro-
magnetic axial regime to the antiferromagnetic planar
regime at Δ ¼ −1. Using exact diagonalization techniques
we estimate various types of coherence as shown in
Fig. 2(d). In the ferromagnetic phase with Δ < −1, all
coherences vanish due to spontaneous symmetry breaking
selecting a unique ferromagnetic ground state with all spins
aligned in the σz basis. In the opposite limit Δ ≫ 1, the
state is a superposition of Néel states, due to the twofold
degeneracy of these states: ðj0101…01i þ j1010…10iÞ=ffiffiffi
2

p
. The coherence thus approaches the Bell state value

C ¼ C1∶2;…;N ≈ 0.56, with all other coherence contributions
vanishing. Because of the spin-flip symmetry, coherence on
each site is always zero, Cn ¼ 0, and C1∶2;…;N can always be
written in a Bell state form, resulting in a constant value.
The coherence contributions between two sites decrease
with distance as expected C1∶n, due to the reduced corre-
lations between these sites. Interestingly, at Δ ¼ −1 the
two-site correlations all converge to the same value,
which we attribute to the fact that this is close to the
antiferromagnetic-ferromagnetic phase transition, which
has the effect of increasing the overall coherence in the
system.
Monogamy of coherence.—From our coherence decom-

positions, we arrive naturally at the notion of monogamy of
coherence. In a tripartite system, if subsystems 2 and 3 are
maximally coherent with respect each other, this limits the
amount of coherence that subsystem 1 has with 2 and 3.
This is immediately evident from Eq. (10), where the
coherence is decomposed into these two contributions. If
subsystem 3 is coherently connected to 1 and 2, then the
tripartite system is described to be polygamous, and
otherwise is monogamous. The coherence monogamy
relations may be identified from Eq. (11), where we
observe that the tripartite coherence C1∶2∶3 can be decom-
posed into several bipartite coherences. The genuine
tripartite coherence can be estimated by subtracting pair-
wise bipartite terms, giving

C1∶2∶3 − C1∶2 − C2∶3 − C1∶3 ≃ C1∶23 − C1∶2 − C1∶3: ð13Þ

For a multipartite system the monogamy inequality reads
C1∶2;…;N ≥

P
N
n¼2 C1∶n. Thus, we define the multipartite

monogamy of coherence with respect to a measure as

M ¼
XN
n¼2

C1∶n − C1∶2;…;N; ð14Þ

which is monogamous for M ≤ 0 due to the multipartite
coherence that is present. For M > 0, it is polygamous
since the dominant coherence is distributed in a pairwise
fashion.
In Fig. 2(c) we calculate Eq. (14) for the W states. We

find that M ≥ 0 for all θ;ϕ; hence, the state is strictly
polygamous. For the GHZ states as shown in Fig. 2(b) there
is only one coherence contribution with C1∶n ¼ 0, which
results inM ¼ −C, meaning that it is strictly monogamous.
This is as expected since the GHZ states are tripartite
entangled, whereas the W state has a bipartite nature [28].
For the Heisenberg spin chain we find both monogamous
(Δ > 2.9) and polygamous behavior (−1 < Δ < 2.9) [see
Fig. 2(d) inset]. For Δ ≫ 1 region when the ground state is
a Néel state, the two-site coherences vanish C1∶n → 0. Then
the coherence is entirely due to the 1∶2;…; N bipartition,
resulting in a monogamous state. This can be understood to
be due to the fact that the Néel state superposition is
essentially the same as a GHZ state up to a redefinition of
state labels. For smallΔ, there is a larger effect from the off-
diagonal terms, σxnσxnþ1 þ σynσ

y
nþ1 ¼ 2ðσþn σ−nþ1 þ σ−nσ

þ
nþ1Þ.

This term tends to create coherence on nearby sites, which
is more characteristic of a polygamous behavior. In this
way the parameter Δ switches the nature of the coherence
between monogamy and polygamy by redistributing it
between relatively local sites to a genuinely multipar-
tite form.
Conclusions.—Multipartite coherence is decomposed

into local and intrinsic parts and quantified using an
entropic measure with metric nature. This decomposition
into various contributions can be used not only to character-
ize a given state but also to locate the origin of the
coherence. In many cases there is a crossover behavior
between the coherences of different origins, which depends
upon the type of the state examined. In the transverse Ising
model, the coherence transitions between local coherence
on the sites to a GHZ-type multipartite nature. The
coherence decompositions lead to a multipartite monogamy
inequality for coherence measures, giving another way of
characterizing the nature of coherence in these systems. In
the Heisenberg XXZ model the coherence displays a
crossover between monogamous and polygamous behavior
when the anisotropy parameter is varied. The framework
provided in this Letter allows for a simple way to under-
stand the nature of an arbitrary quantum state, by character-
izing the various coherence contributions, even for
relatively complicated states in quantum many-body
problems.
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In addition to providing a framework for decomposing
coherence, we believe that the general method is potentially
applicable in several contexts. In the field of quantum
simulation and quantum computing, it is often of interest to
understand what kind of quantum state is generated, either
to understand the nature of a many-body system [29] or for
the purposes of benchmarking [30,31]. Finding the dis-
tribution of coherence provides a more illuminating way of
understanding the nature of a quantum state. One of the
contributions that quantum information made to condensed
matter physics is the introduction of entanglement as a
quantity that can be used to characterize the state of a
system [32]. It is an interesting question of whether
particular types of coherence could be used to analyze
similarly quantum phase transitions. Furthermore, quantum
limits to shareability (i.e., monogamy) of entanglement is
known to be related to frustration in many-body systems
[33–37], and affects the coherence and entanglement
structure in the system. This has a direct effect on
approaches to efficiently capture the wave function of
interacting quantum many-body systems, such as matrix
product states and their variants [38,39]. In quantum
metrology, a recent development has been the use of local
rather than global strategies to gain interferometric advan-
tages [40–42], which highlights the resource nature of
coherence. An interesting future possibility for the QJSD is
that, due to its distance and metric properties and entropic
nature, it could contribute to differential-geometry-based
approaches to quantum information theory and to the
understanding of geometry of quantum states [43].
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