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Quantifying coherence is an essential endeavor for both quantum foundations and quantum tech-
nologies. Here, the robustness of coherence is defined and proven to be a full monotone in the context of the
recently introduced resource theories of quantum coherence. The measure is shown to be observable, as it
can be recast as the expectation value of a coherence witness operator for any quantum state. The robustness
of coherence is evaluated analytically on relevant classes of states, and an efficient semidefinite program
that computes it on general states is given. An operational interpretation is finally provided: the robustness
of coherence quantifies the advantage enabled by a quantum state in a phase discrimination task.
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Nearly one century old, quantum mechanics is now
livelier than ever. Fundamental experiments have just dem-
onstrated, beyond any major loophole, that quantum corre-
lations are incompatible with a local realistic interpretation
[1–3]. Moreover, the realization that quantum properties
can be harnessed for practical applications [4] is presently
fuelling a heated international race [5] to deploy quantum
technologies [6]. This is no coincidence: the improved
comprehension of fundamental quantum properties and
our increased ability to exploit them go hand in hand.
The most essential feature signifying quantumness in a

single system and underpinning all forms of quantum
correlations in composite systems [7–9] is quantum coher-
ence, namely, the possibility of creating superpositions of a
set of orthogonal states. Revealing quantum coherence in
the state of a natural or man-made system earmarks its
behavior as genuinely nonclassical [10,11]. Its degree of
coherence may quantify the capability of such an object for
quantum-enhanced applications [12,13], ranging from
cryptography [14] to metrology [15] and thermodynamics
[16,17]. It is thus imperative to accomplish a rigorous
operational characterization of quantum coherence.
Recently, various approaches have been put forward to

develop a resource theory of coherence [12,13,18–27].
These partly follow from, and complement, earlier studies
on resource theories of asymmetry [18,28–33], of which
coherence may be seen as a special instance [20,34]. A
resource theory is defined by the notions of free states (i.e.,
those not containing the resource, and assumed available at
no cost) and free operations (i.e., those one is restricted to,
and that cannot transform free states into resource states)

[35,36]. Fixing a reference basis (based on physical argu-
ments [37]), which we can identify as the computational
basis fjjigd−1j¼0 for a d-dimensional system, the convex set I
of free states in any resource theory of coherence is given
by the incoherent states diagonal in the reference basis
δ ¼ P

d−1
j¼0 δjjjihjj. Any state ρ can be reduced to an

incoherent one by a full dephasing operation Δ, which
maps ρ into its diagonal part ΔðρÞ ¼ P

d−1
j¼0 jjihjjρjjihjj in

the reference basis.
Different authors have however considered different

options in analyzing limitations on the processing of coher-
ence (see also Refs. [38,39]). We mention the following
alternative choices of free operations, in order of inclusion:
incoherence preserving operations [12] ⊃ incoherent oper-
ations [13] ⊃ strictly incoherent operations [40] ⊃ transla-
tionally invariant operations [20] ⊃ genuinely incoherent
operations [27]. By incoherence preserving operations we
refer to themaximal set of quantumchannelsΛM, whichmap
incoherent states into incoherent states [12], i.e., ΛMðδÞ ∈ I
for any δ ∈ I. Incoherent operations are instead those
quantum channels ΛI that admit one operator-sum
decomposition ΛIðρÞ ¼ P

lKlρKl
† with all incoherence

preserving Kraus operators fKlg [13]. Strictly incoherent
operations ΛS are a subset of incoherent operations whose
incoherence preserving Kraus operators fKlg further obey
hjjKlρK

†
l jji ¼ hjjKlΔðρÞK†

l jji ∀ j; l, meaning that they
can neither create nor use coherence [19,40]. More restric-
tively, genuinely incoherent operations ΛG [27] (also known
as generalized incoherent measurements [40]) are those that
leave every incoherent state invariant, ΛGðδÞ ¼ δ [27]; their
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Kraus operators are all incoherence preserving in all possible
operator-sum decompositions. In between the last two sets
are translationally invariant operations, introducedwithin the
resource theory of asymmetry [18,20]: specialized to coher-
ence (i.e., asymmetry with respect to time translations
generated by a Hamiltonian H diagonal in the reference
basis fjjig), translationally invariant operations ΛT are
defined by the condition e−iHtΛTðρÞeiHt ¼ ΛTðe−iHtρeiHtÞ
for any ρ and any real t.
Several quantities have been proposed accordingly as

candidate measures of quantum coherence, respecting the
physical requirements of monotonicity under (some of) the
sets of operations introduced above [12,13,18–22,
25–27,30,33,37,41]. A canonical measure that complies
with all the aforementioned resource theories is the relative
entropy of coherence [12,13,18,30], which for a state ρ takes
the simple form CSðρÞ ¼ S(ΔðρÞ) − SðρÞ, where SðρÞ ¼
−Tr½ρlog2ρ� is the von Neumann entropy. This measure can
be interpreted as the optimal rate at which maximally
coherent states that can be distilled by incoherent operations
ΛI in the asymptotic limit ofmany copies of ρ [25]; however,
its experimental determination requires full state tomogra-
phy, which can be unfeasible for large systems. More
accessible measures of relevance for quantum metrology
[15], such as the Wigner-Yanase skew information and the
quantum Fisher information [33,41], are monotone under
translationally invariant operations but not under the larger
set of incoherent operations [20], which may put into
question their broader status as coherence quantifiers. In
general, despite recent progress, there remains a shortage of
rigorous and physically intuitive bona fide measures of
coherence endowed with direct operational interpretations.
In this Letter we fill this gap by introducing the robustness

of coherence. As the name suggests, it quantifies theminimal
mixing required to destroy all the coherence in a quantum
state—an already operational definition, inspired by similar
concepts previously investigated for entanglement, steering-
type correlations, nonlocality, and other resources [36,
42–45]. We prove that such a measure is a full monotone
in all possible resource theories of coherence. Themeasure is
furthermore computable (exactly in relevant cases, and
numerically in general via a simple semidefinite program
[46]) and observable: it can be recast as the expectation value
of a witness operator for any quantum state. This makes it
very appealing for experimental investigations, e.g., in
condensed matter and biological contexts [10,11,47]. We
then show that the measure admits a direct operational
interpretation: it quantifies the advantage enabled by a
quantum state, compared to any incoherent state, in a phase
discrimination task. We further discuss the generalization of
these results to the case of asymmetry in a companion paper
[34], which also contains detailed proofs for some technical
results of this Letter.
Let DðCdÞ be the convex set of density operators acting

on a d-dimensional Hilbert space, and let I ⊂ DðCdÞ be the
subset of incoherent states. We define the robustness of
coherence (ROC) of a quantum state ρ ∈ DðCdÞ as

CRðρÞ ¼ min
τ∈DðCdÞ

�
s ≥ 0

���� ρþ sτ
1þ s

≕ δ ∈ I
�
; ð1Þ

that is, the minimum weight of another state τ such that its
convex mixture with ρ yields an incoherent state δ. The
concept is illustrated in Fig. 1 for a qubit (d ¼ 2). If we
denote by τ⋆ and δ⋆ the states achieving the minimum in
Eq. (1), then

ρ ¼ ½1þ CRðρÞ�δ⋆ − CRðρÞτ⋆ ð2Þ
is said to realize an optimal pseudomixture for ρ. Notice
that it is necessary in Eq. (1) to let τ be an arbitrary state: if
one restricted τ to be incoherent, then the minimum swould
diverge for any state ρ with nonzero coherence, henceforth
resulting totally uninformative. This contrasts with the case
of entanglement, for which the original robustness was
defined in terms of pseudomixtures with separable states
[42], and only later extended to pseudomixtures with
arbitrary states [43].
We now prove that the ROC is a bona fide measure of

coherence. First of all, it is seen by definition that

CRðρÞ ≥ 0 and CRðρÞ ¼ 0⇔ ρ ∈ I : ð3Þ
Second, the ROC is convex, which is a desirable (although

not a fundamental) property for a coherence quantifier [13].
The proofmirrors the one for the robustness of entanglement
[42]. Let ρ1 and ρ2 be two states, and write for each the
optimal pseudomixture ρk ¼ ½1þ CRðρkÞ�δ⋆k − CRðρkÞτ⋆k
(k ¼ 1, 2). Taking the convex combination ρ ¼ pρ1þ
ð1 − pÞρ2 with 0 ≤ p ≤ 1, notice that a pseudomixture ρ ¼
ð1þ sÞδ − sτ can be written with δ ¼ fp½1þ CRðρ1Þ�δ⋆1þ
ð1 − pÞ½1þ CRðρ2Þ�δ⋆2g=ð1þ sÞ ∈ I , τ ¼ ½pCRðρ1Þτ⋆1 þ
ð1 − pÞCRðρ2Þτ⋆2 �=s and s¼pCRðρ1Þþð1−pÞCRðρ2Þ. By
definition, CRðρÞ ≤ s, which proves convexity,

CR(pρ1 þ ð1 − pÞρ2) ≤ pCRðρ1Þ þ ð1 − pÞCRðρ2Þ: ð4Þ
Third, and most importantly, the ROC is nonincreasing

under all the sets of operations used in resource theories of
coherence. We prove in fact a general form of monotonicity
under incoherence preserving (sub)channels. Let fΓlgml¼1

be an instrument, i.e., a set of m (sub)channels [completely

FIG. 1. Robustness of coherence CRðρÞ for a single qubit state
ρ ¼ 1

2
ð1þ ~r · ~σÞ, where ~r is the Bloch vector and ~σ is the vector

of Pauli matrices. Incoherent states span the thick vertical r3 axis.
The optimization in Eq. (1) is fulfilled by an equatorial pure state
τ⋆ as depicted, resulting in CRðρÞ ¼ ðr21 þ r22Þ

1
2 ¼ 2jρ01j.
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positive maps whose sum
P

m
l¼1 ΓlðρÞ ≕ ΛðρÞ defines a

trace preserving channel Λ], mapping any incoherent state
δ ∈ I into another (un)normalized incoherent state ΓlðδÞ.
For any ρ, we have then

CRðρÞ ≥
Xm
l¼1

Tr½ΓlðρÞ�CR
�

ΓlðρÞ
Tr½ΓlðρÞ�

�
: ð5Þ

The proof can be easily sketched (see Ref. [34] for
more details). Take the optimal pseudomixture for ρ
given by Eq. (2) and apply the (sub)channel Γl to both
sides, ΓlðρÞ ¼ ½1þ CRðρÞ�Γlðδ⋆Þ − CRðρÞΓlðτ⋆Þ. Since
Γlðδ⋆Þ=Tr½Γlðδ⋆Þ� is still incoherent, definition (1) implies
CR(ΓlðρÞ=Tr½ΓlðρÞ�)≤CRðρÞfTr½Γlðτ⋆Þ�=Tr½ΓlðρÞ�g. Then,P

lTr½ΓlðρÞ�CR(ΓlðρÞ=Tr½ΓlðρÞ�) ≤
P

lTr½ΓlðρÞ�CRðρÞ×
fTr½Γlðτ⋆Þ�=Tr½ΓlðρÞ�g ¼ CRðρÞ

P
lTr½Γlðτ⋆Þ� ¼ CRðρÞ,

concluding the proof. In the casem ¼ 1, Eq. (5) proves that
the ROC cannot increase, on average, under the maximal set
of incoherence preserving operations fΛMg [12]. Form ≥ 1,
if one identifies each Γl with a Kraus operator Kl (obeyingP

m
l¼1Kl

†Kl ¼ 1), then Eq. (5) proves monotonicity of the
ROC under selective incoherent operations fΛIg, flagged as
property C2b in Ref. [13], which is typically a rather
demanding requirement in resource theories. Overall,
Eq. (5) establishes the ROC as a full monotone with respect
to all possible formulations of the theory of coherence.
We now show that the ROC has also the desirable

properties of computability and accessibility. Inspired by
entanglement witnesses [7,48], which are very useful tools to
detect inseparability in the laboratory [49], we introduce the
notion of coherence witnesses. A Hermitian operator W
satisfies ΔðWÞ ≥ 0 if and only if Tr½δW� ¼ Tr½δΔðWÞ� ≥ 0
for all incoherent states δ ∈ I ;we call any such anobservable
W a coherence witness, because finding Tr½ρW� < 0 reveals
coherence in the state ρ [50]. We find that the expectation
value of any witness W, obeying the further constraint
W ≤ 1, provides a quantitative lower bound to the ROC [34]

maxf0;−Tr½ρW�g ≤ CRðρÞ; ∀ W such that ð6Þ
ΔðWÞ ≥ 0 and W ≤ 1: ð7Þ

Importantly, given any state ρ, there always exists an
optimal witness W⋆, characterized in particular by
ΔðW⋆Þ ¼ 0, that saturates inequality (6). In other words,
the ROC is an observable quantity, given by the expectation
value of a suitable (state-dependent) witness operator for
any quantum state ρ. Finding such an optimal witness,
hence determining CRðρÞ as defined in Eq. (1), can be then
recast [34] as a simple semidefinite program (SDP) [51]
(significantly more efficient than the convex optimization
one for the robustness of entanglement [52]):

maximize − Tr½Wρ� subject to Eq: ð7Þ: ð8Þ
For the convenience of the reader, we release the MATLAB

[53] code that makes use of the free CVX package [54,55] to
evaluate the ROC, as Supplemental Material [46].
These results reveal that one can readily estimate the

ROC from below in the laboratory, by measuring any

observable W obeying the constraints in Eq. (7), with no
need for full tomography of the state ρ. This may be
particularly valuable for witnessing coherence effects in
biological domains, e.g., energy transport phenomena in
light-harvesting systems [10,11,47,56]. However, given a
state ρ, the lower bound of Eq. (6) can vanish for non-
optimized choices ofW. Typically, one needs some knowl-
edge on the form of ρ to determine the optimal witnessW⋆;
a similar issue is encountered in entanglement detection
[49]. Nonetheless, Eqs. (6) and (7) imply that, for any set of
observables fOig, i ¼ 1;…; k, experimentally measured
with expectation values oi ¼ Tr½Oiρ�, and not necessarily
tailored to the measurement of ROC, one can consider
coherence witnesses of the formW ¼ P

k
i¼1 ciOi þm1, for

c1;…; ck; m ∈ R, and obtain a lower bound to the ROC by
the SDP [34] (code available [46])

maximize −
�Xk

i¼1

cioi þm

�

subject to Δ
�Xk

i¼1

ciOi þm1

�
≥ 0;

Xk
i¼1

ciOi þm1 ≤ 1:

One can even make potentially better use of available
experimental data, by exactly estimating the minimal ROC
compatible with the data; this can also be cast as a
SDP [34,46].
Accessible faithful lower bounds to the ROC can be

given too, noting that W2 ¼ ½ΔðρÞ − ρ�=∥ΔðρÞ∥∞ obeys
Eq. (7), so that

CRðρÞ≥
∥ρ−ΔðρÞ∥22
∥ΔðρÞ∥∞

≥
∥ρ−ΔðρÞ∥22
∥ΔðρÞ∥2

≥ ∥ρ−ΔðρÞ�∥22; ð9Þ

since Tr½ðΔðρÞ−ρÞρ�¼Tr½ΔðρÞ2�−Tr½ρ2�¼∥ρ−ΔðρÞ∥22.
Here, ∥ · ∥2 is the 2-norm, and ∥ · ∥∞ is the operator norm.
The quantity on the rightmost side of Eq. (9) is (i) nonzero
on all but incoherent states, (ii) itself a monotone under
genuinely incoherent operations ΛG [27], but not under the
larger sets of incoherent operations [13], and (iii) accessible
via the measurement of the purities Tr½ρ2� and Tr½ΔðρÞ2�
[notably, the same holds for the tighter second-to-last
bound in Eq. (9)]. The latter two quantities can be measured
directly on two copies of the state ρ (assumed unknown) as
Tr½ρ⊗2V� and Tr½ρ⊗2Δ⊗2ðVÞ�, respectively, with V being
the swap operator [41,57], defined by its action Vjψijϕi ¼
jϕijψi, for all jψi; jϕi ∈ Cd.
We now show that an analytical evaluation of ROC can

be obtained for a relevant class of d-dimensional states. Let
ρ ∈ DðCdÞ be a state for which there exists a unitary
U ¼ P

je
iϕj jjihjj, belonging to the set of genuinely

incoherent operations [27], such that ðUρU†Þkl ¼ jρklj.
One has then CRðρÞ ¼ Cl1ðρÞ [34], where Cl1ðρÞ ¼P

k;ljρklj − 1 ¼ 2
P

k<ljρklj is the l1 norm of coherence
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[13]. The class of states for which this equality holds
includes, for instance, all one-qubit states (d ¼ 2, see
Fig. 1), all d-dimensional states with an X-shaped density
matrix [58–60] (which contain in particular Bell diagonal
states of two qubits [37,61]), and all pure states jψi ∈ Cd.
For the latter, writing in general jψi ¼ P

d−1
j¼0 ψ jjji, we get

explicitly CRðjψihψ jÞ¼Cl1ðjψihψ jÞ¼ðPjjψ jjÞ2−1 [13].
In particular, maximally coherent states jψþi, charac-

terized by jψ jj ¼ ð1= ffiffiffi
d

p Þ ∀ j ¼ 0;…; d − 1, have
CRðjψþihψþjÞ ¼ Cl1ðjψþihψþjÞ ¼ d − 1, which is the
maximum possible value for the ROC of any d-dimensional
state. One can show [34] in fact that these are the only states
that can reach maximal ROC, which positively settles
another requirement recently advocated for bona fide
measures of coherence [26].
The equivalence between ROC and the l1 norm of

coherence breaks down already in the dimension d ¼ 3.
One can prove however the existence of general upper and
lower bounds [34]

ðd−1Þ−1Cl1ðρÞ≤ CRðρÞ≤ Cl1ðρÞ; ∀ ρ∈DðCdÞ: ð10Þ

Both bounds can be tight. Examples of states saturating the
upper bound have been provided already (for instance, all
pure states). A family of states saturating the lower bound
is instead given by ρp ¼ ð1þ pÞ1=d − pjψþihψþj with
0 ≤ p ≤ 1=ðd − 1Þ, for which Cl1ðρpÞ ¼ pðd − 1Þ and
CRðρpÞ ¼ p. Nonetheless, the lower bound becomes looser
for large values of Cl1 , and one finds CRðρÞ → d − 1 for all
ρ such that Cl1ðρÞ → d − 1 [34].
We are finally ready to provide a direct operational

interpretation for the ROC in a metrology context. Consider
the following phase discrimination (PD) game. Alice
prepares a quantum state ρ ∈ DðCdÞ, which then enters
a black box. The black box encodes a phase on ρ by
implementing a unitary Uϕ ¼ expðiNϕÞ with N ¼P

d−1
j¼0 jjjihjj and ϕ ∈ R, so that the output state is

determined by the action of the unitary channel
UϕðρÞ≔UϕρU

†
ϕ. We can think of N as a Hamiltonian for

the system with an equispaced spectrum, assuming unit
spacing without loss of generality. In this way, the reference
basis fjjig, with respect to which coherence is defined and
measured, is physically identified by the choice of the
Hamiltonian. Suppose one of m phases fϕkgm−1

k¼0 can be
applied, each with a prior probability pk. Any collection
of pairs fðpk;ϕkÞgm−1

k¼0 ≕ Θ defines a PD game, where
Alice’s goal is that of guessing correctly the phase that
was actually imprinted on the state. To this end, she
performs a generalized measurement with elements
fMkg (satisfying Mk ≥ 0,

P
kMk ¼ 1) on the output state

UϕðρÞ after the black box. Optimizing over all measure-
ments, the maximal probability of success depends on
the game Θ and the input state ρ, and is given
by psucc

Θ ðρÞ ¼ maxfMkg
P

k pkTr½Uϕk
ρU†

ϕk
Mk�.

Suppose now Alice’s input state is incoherent, ρ≡ δ ∈ I .
Since every unitary channel Uϕ leaves any such state
invariant, UϕðδÞ ¼ δ, the best strategy for Alice is always
to cast the guess kmax corresponding to the phase with the
highest prior probability pkmax≔maxkpk. This results in an
optimal probability of success for any incoherent state given
by psucc

Θ ðIÞ≔pkmax, which can be achieved even without
actually probing the channel, just by a fixed guess.
It is clear that, by preparing a coherent state ρ∉I , Alice can

expect to do better.What is less obvious yetmore remarkable
is that the maximum advantage achievable by using ρ as
opposed to any incoherent probe δ, in all possible PD games,
is quantified exactly by the ROC of ρ. More precisely [34],

max
Θ

psucc
Θ ðρÞ

psucc
Θ ðIÞ ¼ 1þ CRðρÞ: ð11Þ

The maximum is achieved for the PD game Θ⋆ ≡ fð1=d;
2πk=dÞgd−1k¼0. Therefore, CRðρÞ exactly quantifies, in particu-
lar, how useful the state ρ is for reliable decoding and
transmission of messages encoded by generalized phase
channels ρ↦ZkρZ†k with Zjji ¼ exp½ið2π=dÞj�jji. These
channels feature in several quantum information tasks such as
quantum error correction [62], cloning [63], and dense coding
[64,65]. This suggests a prominent role of coherence, spe-
cifically measured by the ROC, in quantum communication.
We notice that one can consider more general channel

discrimination (CD) games, where each game is
associated with a set of pairs fðpk;ΛkÞgm−1

k¼0 ≕ ϒ with
fΛkg a set of m (generally nonunitary) channels. For each
CD game ϒ, Alice’s goal is still that of discriminating
which Λk gets applied by a black box to an input ρ, and
she succeeds with optimal probability psucc

ϒ ðρÞ ¼
maxfMkg

P
k pkTr½ΛkðρÞMk�, where we optimize

over measurements similarly as before. By virtue of
Eq. (2), for any CD game ϒ it holds that
psucc
ϒ ðρÞ ≤ ½1þ CRðρÞ�psucc

ϒ ðIÞ, where psucc
ϒ ðIÞ is the best

probability of success by using as input any incoherent
state. In general, psucc

ϒ ðIÞ can be higher than pkmax , because
the channels Λk may act nontrivially on incoherent states.
Nonetheless, if one focuses on a subclass of CD games
fϒ⋆g∋Θ⋆ containing the PD game Θ⋆, one gets
maxϒ∈fϒ⋆gðpsucc

ϒ ðρÞ=psucc
ϒ ðIÞÞ ¼ 1þ CRðρÞ. The ROC

CRðρÞ thus quantifies the maximum achievable advantage
in any CD task in which the phase channels Zk are some of
the possible channels applied to a probe ρ. It will be a
worthy development to extend this analysis to the scenario
of assisted CD games, where the collaboration of a
correlated party Bob may further increase Alice’s proba-
bility of success in the discrimination [66].
We conclude by remarking that the definition (1) can be

extended to a more abstract notion of robustness of
asymmetry [34], in which the free states (symmetric states)
are those invariant under the action of a group [18].
Specifically, given a symmetry group G with associated
unitary representation fUggg∈G on the Hilbert spaceH, and
defining the action of Ug on a state ρ ∈ DðHÞ as
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UgðρÞ ¼ UgρU
†
g, a state σ ∈ DðHÞ is symmetric with

respect to G if and only if UgðσÞ ¼ σ for all g ∈ G.
Denoting by S the convex set of all symmetric states,
the robustness of asymmetry of a state ρ is then defined
as ARðρÞ ¼ minτ∈DðHÞfs ≥ 0jðρþ sτÞ=ð1þ sÞ ≕ σ ∈ Sg,
i.e., as the minimum weight of another state τ such that its
convex mixture with ρ yields a symmetric state σ. Then,
suitable adaptations of all the properties demonstrated
above in Eqs. (3)–(9) carry over to the robustness of
asymmetry, including the SDP evaluation and an opera-
tional interpretation in the context of channel discrimina-
tion games [34]. Coherence can be recovered as a special
case of asymmetry with respect to the d-dimensional
representation of the compact group Uð1Þ.
The approach pursued in this Letter, based on the gener-

alized notion of robustness, appears accordingly quite versa-
tile to define and validate insightful quantifiers of resources in
quantum physics [36] and beyond [35,67], as demonstrated
here for the fundamental case of quantum coherence.
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