
Editorial: Climate Science: An Invitation for Physicists

Climate science is rooted in physics and in many of the methods used by physicists. Although
it’s a cliché to say that the practice of science changed dramatically with the advent of the digital
age, computers have had an enormous impact on the growth and evolution of climate science.
Before computing, progress in explaining observations or making predictions in the physical
sciences, including climate science [1], was made using pencil and paper calculations.
Computers changed this completely.
There are currently two main approaches to climate theory: numerical simulations, which use

large-scale general circulation models of the atmosphere and/or oceans, and idealized models—
a physicist’s bread and butter—which are generally geared towards understanding the behavior
of a key physical phenomenon within the larger climate system [2]. Simulations of the climate
operate like enormous coarse-grained weather forecasts; the global climate is represented by the
output from a computational approximation of all of the known physics. In contrast, idealized
models focus on individual subsystems of the climate, such as El Niño [3] or Arctic sea ice [4].
Breaking down the problem in this way facilitates mathematical analysis of the processes
involved and their observational manifestations. There is a vast gulf, both conceptually and in
terms of space and time scales, between simulations and idealized models. Attempts to reconcile
them will have to focus on the problem of scales, a task well suited to physicists: The challenge
of scale separation in both condensed matter and particle physics led to the development of the
renormalization group, unifying concepts in previously disparate fields [5]. Renormalization
group concepts and methods have been successfully applied to fluid dynamics problems [6,7],
which are central to climate dynamics.
Climate science gave birth to one of the most far-reaching branches of mathematics: chaos

theory. Meteorologist Edward Lorenz uncovered chaos theory when developing an idealized
model of thermal convection, similar to that which occurs when water is heated on a stove [8].
Some 50 years later, almost every physicist has heard of chaos, and ideas and concepts based on
the theory have lengthy tendrils that extend throughout many branches of science [9]. In this
sense, climate science is indeed basic science. By considering idealized models motivated by
specific climate problems, could other discoveries akin to chaos be made? We know that
approaches from statistical mechanics normally used to describe microscopic systems can be
applied to large-scale geophysical systems, such as planetary flows, rain, and sea ice thickness
[10–12]. What other concepts could shed light on idealized models and inform our thinking
about geophysical flows? Lorenz advocated that examining the statistics of a flow could provide
more insight into the phenomena than calculating only the flow field itself [13]. His
idealizations continue to push our thinking in many new directions [14–16].
Data analysis is another important area where mainstream physics and climate science can

connect. Experimental high-energy physicists, for example, are experts in locating small signals
in large quantities of data so that they can correctly interpret particle collision events [17]. Could
climate scientists examining data from sediment or ice cores learn from the theoretical and data
analysis methodologies particle physicists use? In turn, could physicists in general learn from
the methodologies employed in climate research [18–22]?
Physicists have successfully addressed a wide swath of science and engineering problems

using myriad methods. Many of these applications have motivated the invention of entirely new
approaches. Climate science offers many exciting opportunities for physicists with broad
interests. The field is as interdisciplinary as, for example, soft matter [23], with practitioners
spanning nearly all science and engineering departments. The problems are rich and vast; they
range from figuring out how to approach challenges like turbulence and multiscale phenomena
[24–26] to embracing the analysis of wide ranging climate proxy data [27–29]. New ideas will
emerge from perspectives that come from the range of approaches used across all areas of
physics. Not only will this help scientists better understand the climate, but what they learn will,
as shown by the legacy of chaos theory, impact fields far beyond climate science.
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