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Themagnetization of a ferromagnet (F) driven out of equilibrium injects pure spin current into an adjacent
conductor (N). SuchFjN bilayers have become basic building blocks in awide variety of spin-based devices.
We evaluate the shot noise of the spin current traversing the FjN interface when F is subjected to a coherent
microwave drive. We find that the noise spectrum is frequency independent up to the drive frequency,
and increases linearly with frequency thereafter. The low frequency noise indicates super-Poissonian spin
transfer, which results from quasiparticles with effective spin ℏ� ¼ ℏð1þ δÞ. For typical ferromagnetic thin
films, δ ∼ 1 is related to the dipolar interaction-mediated squeezing of F eigenmodes.
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Introduction.—The fluctuations of amacroscopic observ-
able, often called noise, constitute a fundamental manifes-
tation of the underlying microscopic dynamics. While the
thermal equilibrium noise is directly related to the linear
response coefficients via the fluctuation-dissipation theorem
[1], nonequilibrium shot noise provides novel information
not accessible via the observable average [2–4]. Shot noise
has been extremely useful in a wide range of phenomena.
The optics community has been exploiting intensity shot
noise in, among several phenomena [5], observing non-
classical photon states [6]. Charge current shot noise has
proven to be an effective probe of many-body effects in
electronic systems [3,4]. It has also been employed to
ascertain the unconventional quanta of charge transfer in
the fractional quantum Hall phase [7–10] and superconduc-
tor-normal metal hybrids [11–14]. Noise has furthermore
been proposed as a means to observe quantum spin [15] or
mode [16] entanglement in electronic circuits.
Spin current forms an observable of interest in a wide

range of systems, such as topological insulators [17], triplet
superconductors [18], magnetic insulators [19,20] and so
on, in which the spin degree of freedom plays an active role.
While spin-dependent charge current noise has been dis-
cussed [21–23], the potential of spin current noise has
remained largely untamed. Foros et al. have considered the
applied voltage driven, and thus conduction electrons
mediated, spin current shot noise in metallic magnetic
nanostructures [24]. The recent experimental observations
of pure spin current thermal noise [25] and nonequilibrium
spin accumulation driven charge current shot noise [26]
indicate the feasibility of and bring us closer to exploiting
this potential. In semiconductor physics, spin noise spec-
troscopy has already become an established experimental
technique [27,28].
Heterostructures formed by interfacing a nonmagnetic

conductor (N) with a ferromagnet (F), typically an insu-
lator (FI), are of particular interest since they allow transfer
of pure spin current carried by the collective magnetization

dynamics in F to electrons in N. This spin transfer
phenomenon has come to be known as spin pumping
[29]. FIjN bilayers have been the playground for a plethora
of newly discovered and proposed effects [20,30] making a
microscopic understanding of the spin transfer process
highly desirable. In this Letter, we investigate spin transfer
between the collective magnetization modes in F and
electrons in N by examining the zero-temperature spin
current shot noise when F is driven by a coherent micro-
wave magnetic field (Fig. 1). Within the commonly used
terminology [29,31], this may be called coherently driven
spin pumping shot noise.
The three key findings of this Letter are spontaneous

squeezing [5] of F eigenmodes, the super-Poissonian
nature of spin transport, and a nontrivial frequency
dependence of the spin current noise power spectral density
SðΩÞ [Fig. 1(b)]:

SðΩÞ ¼ ℏ� Idc
ω

ðjωþΩj þ jω −ΩjÞ; ð1Þ

FIG. 1. (a) Schematic of the ferromagnet (F) and nonmagnetic
conductor (N) bilayer analyzed in the text. The coordinate system
is depicted in blue. A static magnetic field H0ẑ saturates F
magnetization along ẑ while a coherent microwave field
h0 cosωtx̂ creates magnonic excitations in F. The latter annihi-
late at the interface creating excitations and injecting z-polarized
spin current in N. (b) Schematic plot of SðΩÞ=2Idc versus Ω
[Eq. (1)]. SðΩÞ and Idc are, respectively, the noise power spectral
density and the dc value of the interfacial spin current.
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with ω the drive frequency, Idc the dc spin current,
ℏ� ¼ ℏð1þ δÞ, and the expression for δ is derived below.
If dipolar interaction is disregarded, spin ℏ quasiparticles—
magnons [32,33]—constitute the collective magnetization
eigenmodes in F. Hence, the spin transfer to N is often
assumed to take place in lumps of ℏ [34–36]. However, due
to the dipolar interaction, the actual F eigenmodes turn out
to be squeezed-magnon (s-magnon) states. Here, the term
squeezing refers to reduction of quantum uncertainty in one
quadrature at the expense of increased uncertainty in the
other [5]. Thus, the super-Poissonian statistic of spin
transfer reflects the super-Poissonian distribution [5] of
the magnon number in the coherent squeezed-magnon state
of F generated by the coherent microwave drive. The same
shot noise is interpreted in the F eigenbasis as being a result
of Poissonian spin transfer via the squeezed-magnon
quasiparticles which have spin ℏ� [Fig. 1(a)].
Hamiltonian.—The Hamiltonian for the system of inter-

est, depicted in Fig. 1(a), is composed of magnetic ( ~HF),
electronic ( ~HN), interaction between F and N ( ~Hint), and
microwave drive ( ~Hdrive) contributions:

~H ¼ ~HF þ ~HN þ ~Hint þ ~Hdrive; ð2Þ

where the tilde is used to denote operators. We first evaluate
~HF by quantizing the classical magnetic Hamiltonian HF,
which includes contributions from Zeeman, anisotropy,
exchange, and dipolar interactions [33,37]: HF ¼R
VF

d3rðHZ þHaniso þHex þHdipÞ, with VF the volume
of the ferromagnet. An applied static magnetic field H0ẑ
saturates the F magnetization M along the z direction such
that Mx;yð≪ Mz ≈MsÞ become the field variables describ-
ing the excitations. Ms is the saturation magnetization. We
retain terms up to second order in Mx;y. Employing the
relation M2

x þM2
y þM2

z ¼ M2
s and dropping the constant

terms, the Zeeman and anisotropy contributions are
obtained as [38,39] HZþHaniso¼ðω0=2jγjMsÞðM2

xþM2
yÞ,

with ω0 ¼ jγj½μ0H0 þ 2ðK1 þ KuÞ=Ms�, where γ ¼ −jγj is
the typically negative gyromagnetic ratio of F, μ0 is the
permeability of free space, and Kuð> 0Þ and K1ð> 0Þ,
respectively, parametrize uniaxial and cubic magnetocrys-
talline anisotropies [40]. The exchange contribution is
[33,39] Hex ¼ ðA=M2

sÞ½ð∇MxÞ2 þ ð∇MyÞ2�, with A the
exchange constant [41]. The dipolar interaction is treated
within a mean field approximation via the so-called
demagnetization field Hm produced by the magnetization:
Hdip ¼ −ð1=2Þμ0Hm ·M. For spatially constant M,
Hm ¼ −ðNxMxx̂þ NyMyŷþ NzMzẑÞ, with Nx;y;z the ele-
ments of the demagnetization tensor, which is diagonal in
the chosen coordinate system [37].
The classical magnetic Hamiltonian is quantized by

defining the magnetization operator ~M ¼ −jγj ~SF [33,37],
with ~SF the F spin density operator. The magnetization is
expressed in terms of bosonic excitations by the Holstein-

Primakoff transformations [32,33]: ~Mþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jγjℏMs

p ½1−
ðjγjℏ=2MsÞ ~a† ~a� ~a, ~M−¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jγjℏMs

p
~a†½1−ðjγjℏ=2MsÞ ~a† ~a�,

and ~Mz ¼ Ms − jγjℏ ~a† ~a, where ~M� ¼ ~Mx � iðγ=jγjÞ ~My.
The operator ~a† ≡ ~a†ðrÞ creates a magnon at position r,
satisfies the bosonic commutation relation, ½ ~aðrÞ; ~a†ðr0Þ� ¼
δðr − r0Þ, and is expressed in terms of the Fourier space
magnon creation operators ~b†q via ~a†ðrÞ ¼ P

qϕ
�
qðrÞ ~b†q

with plane wave eigenstates ϕqðrÞ¼ð1= ffiffiffiffiffiffi
VF

p Þexpðiq ·rÞ.
Following the quantization procedure [33,37], the magnetic
Hamiltonian simplifies to

~HF ¼
X
q

½Aq
~b†q ~bq þ B�

q
~b†q ~b

†
−q þ Bq

~bq ~b−q�; ð3Þ

where Aq¼A−q¼ℏðω0þDq2þjγjMsμ0ðNxzþNyzÞ=2Þþ
ℏωAðqÞ and Bq ¼ B−q ¼ ℏjγjMsμ0Nxy=4þ ℏωBðqÞ. Here,
D ¼ 2Ajγj=Ms, Nxy ¼ Nx − Ny, and so on, ωA;BðqÞ are the
dipolar interaction contributions for magnons with q ≠ 0
[33,37], and ωBðqÞ is complex in general. The Hamiltonian
Eq. (3) is diagonalized by a Bogoliubov transformation
[32,33] to new bosonic excitations defined by ~βq ¼
uq ~bq − v�q ~b

†
−q,

~HF ¼
X
q

ℏωq
~β†q ~βq; ð4Þ

with transformation parameters ℏωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
q − 4jBqj2

q
,

vq ¼ −2Bq=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAq þ ℏωqÞ2 − 4jBqj2

q
, vq=uq ¼ −2Bq=

ðAq þ ℏωqÞ, and u2q ¼ 1þ jvqj2. Here, uq has been chosen
to be real positive while vq is in general complex, with
v0 real.
If the dipolar interaction is disregarded, Bq ¼ 0, ~βq ¼ ~bq,

and magnon modes are the eigenstates of F. To gain insight
into the effect of the dipolar interaction on the eigenmodes,
we note that the vacuum corresponding to the new
excitations j0iβ is defined by ðuq ~bq − v�q ~b

†
−qÞ j0iβ ¼ 0.

Employing the Baker-Hausdorff lemma and relegating
detailed derivations to the Supplemental Material [42],
this becomes ~S2ðξqÞ ~bq ~S†2ðξqÞj0iβ ¼ 0, with ξq ¼
−ðvq=jvqjÞtanh−1ðjvqj=uqÞ, where ~S2ðξqÞ ¼ expðξ�q ~bq ~b−q−
ξq ~b

†
q
~b†−qÞ is the two-mode squeeze operator [5], considering

q ≠ 0. This leads to j0iβ ¼ ~S2ðξqÞj0ib showing that the ~βq
vacuum is obtained by squeezing the magnon vacuum, two
modes ( ~b�q) at a time. In other words, βq excitations are

obtained by squeezing ~b�q, and are thus called squeezed
magnons (smagnons). Instead of deriving a similar relation
for the q ¼ 0 mode, we demonstrate its squeezing by
evaluating the vacuum fluctuations of ~Mx;y ¼R
VF

~Mx;yd3r ∝ ðb†0 � b0Þ:
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hðδ ~Mx;yÞ2i0 ¼
jγjℏM0

2
expð∓2ξ0Þ; ð5Þ

where hi0 denotes expectation value in the ground state,
M0 ¼ MsVF is the total magnetic moment, and ξ0 ¼
−tanh−1ðv0=u0Þ is real. The sign of ξ0, and thus the
direction (x or y) of squeezing, is determined by the sign
of −v0=u0 ∝ B0 ∝ Nxy. Hence, we find reduced quantum
noise in one component of the total magnetic moment while
the noise is increased in the other component. Owing to
dipolar interactions, the F ground state exhibits sponta-
neous squeezing.
The electronic Hamiltonian for N can be written as

~HN ¼ P
k;s¼�ℏωk ~c

†
k;s ~ck;s, where ~c†k;s are fermionic oper-

ators that create electrons with spin sℏ=2 along the z
direction in orbitals with wave functions ψkðrÞ. We con-
sider that F and N couple via an interfacial exchange
interaction parametrized by J [34,35]:

~Hint ¼ −
J
ℏ2

Z
A
d2ϱ( ~SFðϱÞ · ~SNðϱÞ); ð6Þ

where A denotes the interfacial area and ϱ is the interfacial
2D position vector. ~SN ¼ ðℏ=2ÞPs;s0

~Ψ†
sσs;s0 ~Ψs0 is the N

spin density operator, where ~ΨsðrÞ ¼
P

kψkðrÞ~ck;s annihi-
lates electrons with spin sℏ=2 at r, and the components of σ
are the Pauli matrices. In terms of the normal mode
operators [43],

~Hint ¼
X
k1k2q

ℏWk1k2q ~c
†
k1þ ~ck2−

~bq þ H:c:; ð7Þ

with ~bq ¼ uq ~βq þ v�q ~β
†
−q, and ℏWk1k2q ¼ J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ms=2jγjℏ

p
×R

A d2ϱψ�
k1
ðϱÞψk2ðϱÞϕqðϱÞ. The microwave drives the sys-

tem via Zeeman coupling between its magnetic field
h0 cosðωtÞx̂ and the F total magnetic moment M:

~Hdrive ¼ −μ0h0 cosðωtÞBð~β0 þ ~β†0Þ; ð8Þ

with B ¼ ðu0 þ v0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijγjℏM0=2

p
.

Since the magnonic excitations possess spin along the z
direction, we are interested in z-polarized spin current
injected into N by F. The corresponding spin current
operator is given by

~Iz ¼
1

iℏ
½ ~Sz; ~Hint� ¼

X
k1k2q

− iℏWk1k2q ~c
†
k1þ ~ck2−

~bq þ H:c:;

with ~S ¼ R
VN

d3r ~SNðrÞ, where VN denotes the volume
of N.
Equations of motion.—We have thus expressed the total

Hamiltonian and the spin current operator in terms of the
creation and annihilation operators of F (smagnons) and N
(electrons) eigenmodes. Working in the Heisenberg picture,

the time resolved expectation value of an observable can be
obtained by evaluating the time evolution of electron and s-
magnon operators. Since the microwave drives the q ¼ 0
magnetic mode coherently leaving all other modes essen-
tially unperturbed, we make the quasiclassical approxima-
tion replacing ~βq by c numbers βδq;0, and derive the

dynamical equation for βðtÞ ¼ h~β0ðtÞi below. This
“approximation” is equivalent to disregarding the equilib-
rium noise and allows us to focus on the shot noise. The
contribution of thermal and vacuum noises shall be
considered elsewhere.
The Heisenberg equations of motion _~ckþ¼

ð1=iℏÞ½~ckþ; ~H� simplify to

_~ckþ ¼ −iωk ~ckþ − i
X
k2;q

Wk;k2;q ~ck2−
~bq: ð9Þ

Similarly, equations of motion can be obtained for ~ck− and
~βq. As detailed in the Supplemental Material [42], we
obtain solutions to these equations up to the lowest non-
vanishing order in J using the method employed by
Gardiner and Collett [44] in deriving the input-output
formalism [5]. Until some initial time t0, F and N do not
interact with each other and are in equilibrium so that the
density matrix of the system, which stays the same in the
Heisenberg picture, factors into the equilibrium density
matrices ofF andN. The terms ~Hint and ~Hdrive are turned on
at t ¼ t0. The steady state solution for any time t > t0 is
obtained by taking the limit t0 → −∞ in the end. Thegeneral
solution to Eq. (9) for t > t0 can then be written as [44]

~ckþðtÞ ¼ e−iωkðt−t0Þ ~ckþðt0Þ

− i
X
k2;q

Wk;k2;q

Z
t

t0

e−iωkðt−t0Þ ~ck2−ðt0Þ ~bqðt0Þdt0: ð10Þ

Employing analogous expressions for ~ck−, the Heisenberg
equation of motion for ~β0, and retaining terms up to second
order in J , we obtain the dynamical equation for
βðtÞ ¼ h ~β0ðtÞi:

_β ¼ − iω0β − ðu20 þ v20ÞΓNβ þ 2u0v0ΓNβ
�

þ i
μ0h0B
ℏ

cosðωtÞ; ð11Þ

where ΓN ¼ ωα0 ¼ ωπjWϵFermi;0j2V2
Nℏ

2g2ðϵFermiÞ represents
the magnetic dissipation caused by the electronic bath in N.
Here, gðϵFermiÞ is the electronic density of states at the Fermi
energy ϵFermi, and we assume that Wk1;k2;0 ¼ WϵFermi;0

depends only on k1;2 magnitudes, and hence on ϵFermi.
Thus far, we have not considered any internal dissipation in
F. This can be done by including nonlinear interactions with
another bath [electrons, phonons, (s) magnons, etc.] in ~HF
[44]. The resulting dynamical equation for β is obtained by
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replacing ΓN by Γ ¼ ΓF þ ΓN in Eq. (11), where ΓF
depends on the details of the nonlinear interaction consid-
ered in ~HF.
Results and discussion.—Substituting the ansatz β ¼

βþ expðiωtÞ þ β− expð−iωtÞ in Eq. (11), we find that
βþ ≪ β− for Γ ≪ ω0, and hence βþ is disregarded making
the rotating wave approximation:

βðtÞ ¼ μ0h0B
2ℏ

1

ðω0 − ωÞ − iΓðu20 þ v20Þ
e−iωt: ð12Þ

Thus, we obtain resonant excitation of the q ¼ 0 s-magnon
mode at ω ¼ ω0. The analysis leading to Eq. (12) is
employed to obtain the expectation value of the spin
current operator up to the order J 2:

IzðtÞ ¼h~IzðtÞi ¼ Idc ¼ 2ℏα0ωjβj2: ð13Þ

Thus, the spin current injection also exhibits resonant
behavior akin to magnetization dynamics [45].
The single-sided spectral density of spin current noise

SðΩÞ is obtained via the Wiener-Khintchine theorem for
nonstationary processes [46]: SðΩÞ ¼ 2

R∞
−∞ RðtÞeiΩtdt,

with RðtÞ ¼ limτ0→∞ð1=2τ0Þ
R
τ0
−τ0 Φðτ; τ − tÞdτ, where

Φðt1; t2Þ ¼ ð1=2Þh ~δIzðt1Þ ~δIzðt2Þ þ ~δIzðt2Þ ~δIzðt1Þi is the
expectation value of the symmetrized spin current fluctua-
tions [ ~δIz ¼ ~Iz − h~Izi] correlator. Assuming zero temper-
ature and again retaining terms up to order J 2, the spin
current shot noise simplifies to Eq. (1) with
ℏ� ¼ ℏð1þ 2v20Þ, which is the main result of this Letter.
The zero frequency noise thus becomes Sð0Þ ¼ 2ℏð1þ

2v20ÞIdc [Eq. (1)]. Equations (12) and (13) show that Sð0Þ
exhibits resonant behavior as a function of ω. Under certain
conditions, the low frequency shot noise for a Poissonian
transport process with transport quantum q and dc current
I0 is known to be 2qI0 [3,5]. Thus, in the N eigenbasis, in
which electrons undergo spin flips by absorbing magnons,
our result for low frequency spin current shot noise can be
understood as due to correlated spin transfer in lumps of ℏ.
This interpretation is corroborated by the squeeze param-
eter ξ0 dependent super-Poissonian distribution of the
particle (in this case, magnon) number in a coherent
squeezed state [5].
An alternate interpretation for the low frequency noise is

obtained in the F eigenbasis: spin transport takes place via
the coherent state driven Poissonian transfer [5] of β0 s
magnons which have a spin of ℏ� ¼ ℏð1þ δÞ with
δ ¼ 2v20. This nonintegral spin of s magnons can also be
obtained directly by evaluating the expectation value of the
z component of the total spin in F:

R
VF
h ~SzFðrÞid3r ¼

−M0=jγj þ
P

qℏð1þ 2jvqj2Þnβq þ
P

qℏjvqj2, where the
last term in this expression represents the vacuum noise
[32], and nβq denotes the number of s magnons with wave

vector q. Thus, we see that the smagnon with wave vector q
has spin ℏð1þ 2jvqj2Þ.
However, vq is considerable only when the relative

contribution of the dipolar interaction to the total eigenmode
energy ℏωq is not negligible. In particular, with ω0=2π ¼
1 GHz, δ ¼ 2v20 ≈ 0.4 for yttrium iron garnet (jγj ¼ 1.8×
1011 Hz=T,Ms ¼ 1.4 × 105 A=m [40]) and δ ≈ 3.0 for iron
(jγj ¼ 1.8 × 1011 Hz=T, Ms ¼ 1.7 × 106 A=m [40]) thin
films (Nx ¼ 1; Ny;z ¼ 0). δð∝ N2

xyÞ vanishes when
Nxy ¼ 0, and δ → 0 when H0=Ms → ∞.
To discuss a physical understanding of the spin current

shot noise frequency dependence [Eq. (1)], we note that the
charge current noise at frequency Ω is due to absorption
and emission of photons at the same frequency [47]. We
make an analogous interpretation of spin current noise in
terms of absorption and emission of photonlike quasipar-
ticles, keeping in mind that the analogy is mathematical.
Thus, forΩ < ω, the only possible processes are absorption
of photonlike quasiparticle and s magnon while creating an
excitation in N [process (1) in Fig. 2] and absorption of s
magnon while creating a photonlike quasiparticle and an
excitation in N [process (3) in Fig. 2]. The rate of each
process is proportional to the number of states available for
creating an excitation in N, which, at zero temperature, is
proportional to the energy of the N excitation governed by
energy conservation in the process. Similar arguments can
be made when Ω > ω (Fig. 2), thereby motivating the
frequency dependence in Eq. (1).
Summary.—We have evaluated the zero-temperature

shot noise of spin current injected into a nonmagnetic
conductor (N) by an adjacent ferromagnet (F) driven by a
coherent microwave drive. The low frequency shot noise
indicates spin transfer in quanta of ℏ� ¼ ℏð1þ δÞ asso-
ciated with the zero wave vector excitations in F. We
demonstrate that owing to dipolar interaction [48], the F
ground state exhibits spontaneous squeezing [5], and its
normal excitations are squeezed magnons with nonintegral
spin. Our work thus provides important new insights into
the magnetization mediated spin transfer mechanism in
FjN bilayers, and paves the way for exploiting the
spontaneously squeezed F ground state.

FIG. 2. Processes contributing to spin current noise at fre-
quencyΩ. The blue, green, and gray circles, respectively, depict s
magnon, excitation created in N, and spin current analog of a
photon (see text). For Ω < ω (the drive frequency), only
processes (1) and (3) are allowed, while for Ω > ω, only
processes (1) and (2) take place.
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