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We consider the real-time dynamics of an initially localized distinguishable impurity injected into the
ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we
numerically compute the time evolution of the impurity density operator in regimes far from analytically
tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands.
For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the
background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is
injected with a finite center-of-mass momentum, the impurity moves through the background gas in a
snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged
back and forth between the impurity and the background gas.
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Introduction.—With recent experimental advances in
the field of cold atomic gases, the physics of the one-
dimensional Bose gas is receiving an increasing amount of
attention [1–15]. These systems, in which one has unprec-
edented isolation from the environment and fine control of
interparticle interactions, are excellent tools for examining
novel phenomena arising from strong correlations.
One such phenomenon which has piqued both theoreti-

cal [8,14,16–21] and experimental [19,22] curiosity is the
expansion dynamics of a gas of cold atoms. A number of
surprising and interesting effects have been observed, of
which arrested expansion (or self-trapping) [16–18] is
particularly relevant to this Letter. A gas (bosons [19] or
fermions [23,24]) is released from a confining potential and
allowed to expand on the lattice. Under this time evolution,
“bimodal” expansion is observed: the sparse outer regions
of the cloud rapidly expand while the dense central region
spreads only very slowly. This can be partially understood
by considering the limit of strong interactions: doubly
occupied sites are high-energy configurations which,
thanks to the lattice imposing a finite bandwidth and
energy conservation, cannot release their energy to the
rest of the system and decay [18].
With these recent experimental advances [25] has also

come the ability to examine systems in which there is a
large imbalance between two species [6,7,9,26–29], a
natural starting point for the study of impurity physics.
This gives insight into a diverse range of problems [29],
including the physics of polarons [27,30] as well as the
x-ray edge singularity [31,32] and the orthogonality catas-
trophe [33]. The physics of impurities also plays an
important role in the calculation of edge exponents in
dynamical correlation functions [34] and in understanding

the nonequilibrium dynamics following a local quantum
quench [13,35,36].
The experimental study of the out-of-equilibrium

dynamics of a single impurity in the one-dimensional
Bose gas has revealed rather rich physics, including how
an impurity spreads when accelerated through a Tonks-
Girardeau gas [6] as well as how interactions affect
oscillations in the size of a trapped out-of-equilibrium
impurity [9]. Numerous theoretical investigations have
addressed the Tonks-Girardeau regime, from a static point
impurity [37,38] to a completely delocalized (e.g., plane
wave) impurity [39–44]. Theoretical study of the con-
tinuum problem is challenging away from the Tonks-
Girardeau limit; results have thus focused on lattice models,
such as the Bose-Hubbard model [8,45].
In this Letter we consider the out-of-equilibrium dynam-

ics of an initially localized impurity in the Lieb-Liniger
model. Using a combination of exact analytical results and
numerical computations, we show that an impurity injected
into the ground state of the Lieb-Liniger model undergoes a
stuttering sequence of rapid movement or expansion fol-
lowed by arrested expansion. For an initially stationary
impurity, this is caused by the interaction-driven out-of-
equilibrium formation of a quasibound state of the impurity
with a hole in the background gas. This quasibound state is
robust under time evolution for long periods of time. For an
impurity with a finite initial center of mass (c.m.) momen-
tum, the stuttering sequence results in the impurity
“snaking” through the background gas; the impurity ex-
changesmomentum back and forth with the background gas
through a quantumNewton’s cradlelikemechanism [3]. The
results we present are relevant to experiments (see, e.g.,
Ref. [6]) and should beobserved under reasonable conditions.
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The two-component Lieb-Liniger model.—We consider
two species of delta function interacting bosons confined to
a ring of length L. The Hamiltonian of the two-component
Lieb-Liniger model (TCLLM) is given by

H ¼
Z

L

0

dx
X
j¼1;2

ℏ2

2m
∂xΨ

†
jðxÞ∂xΨjðxÞ

þ
Z

L

0

dx
X

j;l¼1;2

cΨ†
jðxÞΨ†

l ðxÞΨlðxÞΨjðxÞ; ð1Þ

where herein we set ℏ ¼ 2m ¼ 1, c is the interaction
parameter, and the boson operators obey the canonical
commutation relations ½ΨjðxÞ;Ψ†

l ðyÞ� ¼ δj;lδðx − yÞ with
j, l ¼ 1, 2 denoting the species. As in the case of the one-
component Lieb-Liniger model [46–48], the generalization
to multiple particle species remains integrable provided all
species interact identically [49,50].
The TCLLM can be solved by the Bethe ansatz [49,50],

giving access to some of its basic physical properties (see,
e.g., [51–53] and references therein). An N-particle eigen-
state containingN1 particles of species 1 is characterized by
a set of N momenta fqgN ¼ fq1;…; qNg and a set of N1

species rapidities fλgN1
¼ fλ1;…; λN1

g. These momenta
and rapidities satisfy the nested Bethe ansatz equations

eiqjL ¼ −
YN
l¼1

qj − ql þ ic

qj − ql − ic

YN1

m¼1

qj − λm − ic
2

qj − λm þ ic
2

; ð2Þ

YN
l¼1

λk − ql − ic
2

λk − ql þ ic
2

¼ −
YN1

l¼1

λk − λl − ic
λk − λl þ ic

; ð3Þ

where j ¼ 1;…; N and k ¼ 1;…; N1. The eigenstate
jfqgN ; fλgN1

i has energy Eq ¼
P

jq
2
j and momentum

Kq ¼
P

jqj.
The initial state.—We study the dynamics of an impurity

starting from the state

jΨðQÞi ¼ 1

N

Z
L

0

dxeiQxe−ð1=2Þ½ðx−x0Þ=ða0Þ�2Ψ†
1ðxÞjΩi; ð4Þ

where jΩi is the N2 ¼ N − 1 particle ground state of the
one-component Lieb-Liniger model, Q is the c.m. momen-
tum of the impurity, and N normalizes the state. The study
of such a state is partially motivated by the experiments
performed in Refs. [6,9], which study the dynamics of an
impurity in a background gas.
The initially localized impurity of Ref. [6] is prepared by

illuminating a trapped one-component Bose gas with a
radio-frequency pulse; this causes transitions between the
jF;mFi ¼ j1;−1i hyperfine state of the trapped gas and the
j1; 0i state (the impurity). Because of the magnetic trap,
transitions occur only within a spatially localized region,
the thinness of which is Fourier limited by the pulse

duration. The resulting impurity contains up to three
particles and is accelerated through the gas by gravity,
as the j1; 0i state does not experience the magnetic trap.
On the other hand, the impurity in Ref. [9] is prepared by

first tuning the interspecies interaction to zero and then
using a species-dependent trap and light blade to shape the
impurity. Following this preparation, the interspecies inter-
action is turned on, the impurity is released from the trap
and light blade, and its expansion is studied.
To distill the intrinsic dynamics of the impurity, our

scenario varies slightly from experiments [6,9]: we study an
impurity injected into a constant-density background gas in
the absence of an external potential (such as a magnetic trap
and gravity). Similar approximations have been applied in
the well-studied yrast states [54–58].
Time evolution protocol.—Our aim is to compute the

impurity density profile when the initial state (4) is
time evolved according to the Hamiltonian (1) ρ1ðx; tÞ ¼
hΨðQÞjeiHtΨ†

1ðxÞΨ1ðxÞe−iHtjΨðQÞi. This is a nontrivial
problem as the initial state (4) is not an eigenstate of the
Hamiltonian. We use the integrability of the TCLLM to
numerically evaluate the density profile using recently
derived results for matrix elements of local operators
[53]. Because of a dearth of results for matrix elements
in the TCLLM, we are restricted to studying the density of
the impurity and we cannot examine the background
gas [59].
The essential idea is the following: we insert complete

sets of eigenstates between each time evolution operator
and the initial state in ρ1ðx; tÞ. By orthogonality, we sum
over the Bethe states with N1 ¼ 1 and N1 þ N2 ¼ N. The
momenta and rapidities characterizing these states satisfy
the nested Bethe ansatz equations (2), (3). The density
profile of the impurity will then be given by

ρ1ðx; tÞ ¼
X
fkg;μ
fpg;λ

hΨðQÞjfpg; λihfpg; λjΨ†
1ð0ÞΨ1ð0Þjfkg; μi

× hfkg; μjΨðQÞieiðEp−EkÞteiðKp−KkÞx; ð5Þ

where fqg≡ fqgN . The overlap of the initial state with a
Bethe state can be expressed as N hfkg; μjΨðQÞi ¼R
L
0 dxe

iðQþKk−KΩÞxe−ð1=2Þ½ðx−x0Þ=ða0Þ�2hfkg; μjΨ†
1ð0ÞjΩi, where

KΩ is the momentum of the ground state jΩi. So, in order to
compute (5) we require two ingredients: the matrix ele-
ments of the creation operator Ψ†

1ð0Þ and the density
operator Ψ†

1ð0ÞΨ1ð0Þ on the Bethe states. These matrix
elements have been derived from the algebraic Bethe
ansatz [53,60]. Required results are summarized in the
Supplemental Material [61].
Readers interested in our scheme for numerically evalu-

ating the expansion (5) can consult Ref. [69]. An important
point to note is that the expansion (5) contains an infinite
number of terms. We truncate the Hilbert space by selecting
the Bethe states which have the largest overlap with the
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initial state (4). To quantify the truncation error, we
compute the saturation of the sum ruleX

fkgN ;μ
jhΨðQÞjfkgN ; μij2 ¼ 1; ð6Þ

and we present numerical values for this with our results.
We are limited to small numbers of particlesN ≲ 10 and we
have to keep ∼104–105 states to saturate the sum rule to 2
decimal places.
The noninteracting limit.—In the noninteracting limit,

the time evolution of the initial state (4) is a single particle
problem. The time-dependent density profile can be
calculated exactly (we take L → ∞) as ρ1ðx; tÞc¼0 ¼
ða0=

ffiffiffi
π

p Þ exp½−a20ðxþ 2QtÞ2=ða40 þ t2Þ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a40 þ t2

p
. The

noninteracting density profile remains Gaussian at all
times, with a time-dependent width and amplitude.
Arrested expansion:Q ¼ 0.—In Fig. 1 we present results

for the time evolution of the impurity density profile (5) for
N ¼ 8 bosons on the circumference L ¼ 40 ring starting
from the initial state (4) with x0 ¼ L=2, a20 ¼ 1.125, and
interaction parameter c ¼ 10. We measure time in units of
tF ¼ 1=EF, where EF ¼ ðπN=LÞ2 is the Fermi energy in
the c → ∞ limit. The Hilbert space is truncated to 25 150
states, leading to a sum rule saturation of 0.9858 (i.e., to
1.4%). Upon time evolution the wave packet spreads,
maintaining its Gaussian shape as in the noninteracting
case. However, at time t ∼ 2tF the wave packet stops
spreading and only undergoes small-amplitude breathing
oscillations. This arrested expansion is an example of
prethermalization [70–77]. The system relaxes in a two-
step process, first approaching a quasistationary nonequili-
brium state (the arrested expansion) before the subsequent
equilibration. Two-step relaxation has been observed in the
one-dimensional Bose gas following a global quantum
quench [78–80].

We can qualitatively reproduce aspects of this behavior
with a mean field (MF) decoupling of the interaction term

Ψ†
jðxÞΨ†

l ðxÞΨlðxÞΨjðxÞ≈ρjðx;tÞΨ†
l ðxÞΨlðxÞþ j↔ l: ð7Þ

At a MF level the impurity profile is a time-dependent
repulsive one-body potential for the background gas. The
region under the impurity then excludes particles in the
background gas, resulting in the formation of a “hole.” This
hole in the background gas acts as a confining (attractive)
one-body potential for the impurity in the MF and the two
form a quasibound particle-hole pair [81], much like an
exciton in the electron gas (see, e.g., Ref. [82]). This is
different to the self-trapping scenario on the lattice—there,
the “doublons” are stable as the large interaction energy
cannot be converted into kinetic energy due to particle
number conservation and the finite bandwidth. In the
continuum, dynamical arrest is driven by the formation
of the impurity-hole quasibound state and is not observed
for an indistinguishable impurity [61].
At later times (t≳ 7tF), the impurity eventually broadens.

This broadening occurs in a sequence of steps of expansion
or arrested expansion, while the impurity undergoes small-
amplitude breathing oscillations [61]. The slow decay of the
density at later times may be related to the subdiffusive
equilibrium behavior reported in Ref. [35]. However, finite-
size effects and our choice of observables obscure the
characteristic logarithmic decay of subdiffusion.
The snaking impurity: Q ≠ 0.—Finally, we consider the

time evolution of the initial state (4) with nonzero c.m.
momentum Q. Our prescription for computing the time
evolution is identical to theQ ¼ 0 case; in Fig. 2 we present
results for the impurity density profile for the same set of
parameters as in Fig. 1 with Q ¼ π. We see rather
surprising behavior: the impurity moves in a snaking

FIG. 1. Time evolution of the impurity density of the initial
state (4) with Q ¼ 0, x0 ¼ L=2, and a20 ¼ 1.125 on the L ¼ 40
ring for a system of N ¼ 8 particles with interaction parameter
c ¼ 10. The Hilbert space is truncated to 25 150 states, leading to
the sum rule (6) equaling 0.9858. Inset: Time evolution of the
maximum of the density ρ1ðx0; tÞ. Constant time cuts can be
found in the Supplemental Material [61].

FIG. 2. The dynamics of the impurity density (5) from the
initial state (4) with a20 ¼ 1.125 and Q ¼ 40π=L. We use 21 507
states to study a system of N ¼ 8 bosons on the length L ¼ 40
ring with interaction parameter c ¼ 10, resulting in the sum rule
(6) equaling 0.981. Plots of constant time cuts are presented in the
Supplemental Material [61].
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manner, repeatedly moving and expanding before becom-
ing approximately stationary with arrested expansion. To
quantify the nonuniform motion of the impurity further, we
define the c.m. coordinate XðtÞ as

XðtÞ ¼ L
2π

arctan

�R
2π
0 dθ sin θρ1ðθ; tÞR
2π
0 dθ cos θρ1ðθ; tÞ

�
; ð8Þ

where θ ¼ 2πx=L. We plot the c.m. coordinate in Fig. 3 for
a number of interaction strengths: XðtÞ shows regions of
rapid movement, followed by (approximately) stationary
plateaus. Only at t≲ tF=3 does the c.m. move as in the
noninteracting case, XðtÞc¼0 ¼ Xð0Þ − 2Qt. The sharpness
of the plateaus and transient regions are governed by the
interplay between the delocalization of the impurity and its
interactions with the background gas [83].
We have the following picture for the behavior shown in

Fig. 2: (i) The impurity moves to the left, scattering
particles in the background gas and creating excitations
with finite momentum. (ii) The impurity continues to
scatter with the background until it imparts most (or all)
of its c.m. momentum. (iii) The excitations in the back-
ground gas propagate around the ring and then collide once
more with the impurity. (iv) The impurity gains c.m.
momentum and the process repeats. In support of this
picture is the behavior of the c.m. position plateau with
system size L: the time for leaving the plateau τp is
(approximately) linearly dependent on L. τp is also related
to the initial momentum Q of the impurity; for large Q,
τp ∼ 1=Q (an excitation with momentum Q has velocity
∼Q=m). This Q dependence reflects the momentum
imparted by the impurity to excitations in the background
gas, which then propagate around the ring [84]. This
process can be thought of in terms of a quantum
Newton’s cradle [3] on a ring, with the impurity exchanging
momentum back and forth with the background gas,
resulting in the snaking motion shown in Fig. 2. In the

Supplemental Material we show that this behavior is not
realized on the lattice when we perform the MF decoupling
(7) for the same set of parameters that capture some aspects
of the Q ¼ 0 behavior [61].
It is interesting to consider removing periodic boundary

conditions: excitations produced by injecting the impurity
will propagate towards the boundary and subsequently
reflect, returning to once again scatter the impurity. This
reflection of the excitations means that we expect the c.m.
to snake back and forth about x0 rather than around the ring.
In the presence of a harmonic trap, the c.m. will travel in a
snaking motion due to both the trap and collisions with the
background excitations.
A question that has recently attracted attention is whether

an injected impurity has finite momentum in the t → ∞
limit (see, e.g., Refs. [39–44]). To address this, we compute
the momentum of the impurity in the diagonal ensemble
(DE) [85] KDE¼

P
fkg;μhΨðQÞjfkg;μihfkg;μjΨðQÞi×P

phfkg;μjpΨ†
1;pΨ1;pjfkg;μi, whereΨ1;p¼1=L

R
dxe−ipx×

Ψ1ðxÞ. Doing so, we find KDE ≈ −0.022 (for N ¼ 4
particles on the length L ¼ 40 ring), in keeping with
general expectations from the study of the delocalized
impurity in the Tonks-Girardeau limit [42–44]. We have
also examined the density of the impurity in the DE to
ascertain whether translational symmetry is restored in the
long-time limit. Generically, we find that translational
symmetry is not restored in the finite-size system due to
a symmetry of the Bethe states under a change in sign of all
the momenta and rapidities.
Conclusion.—In this Letter, we consider the nonequili-

brium time evolution of a single localized impurity (4)
injected into the ground state of the Lieb-Liniger model. In
both the case of zero and finite c.m. momentum, we
observe a “stuttering” behavior in the motion. In the first
case (see Fig. 1), this quantum stutter manifests in the
arrested expansion of the impurity (in the absence of a
lattice). This arises from the out-of-equilibrium formation
of quasibound impurity-hole pairs, which are stable for
extended periods of time. This interaction-driven effect
can be qualitatively captured by the MF decoupling (7):
the impurity repels the background gas, leading to the
formation of a hole that acts as a confining potential for the
impurity. Eventually the impurity broadens in a sequence
of rapid expansions and quasistationary periods, all the
while undergoing small-amplitude breathing oscillations.
This stuttering motion and the quasibound state formation
highlights the importance of distinguishability, as this
mechanism does not exist for an impurity of the same
species as the background gas [86].
In contrast, when the impurity is injected with a finite

c.m. momentum, the quantum stutter is clearly seen in the
motion of the impurity, which snakes through the back-
ground gas (see Figs. 2 and 3). We can picture this as a
quantum Newton’s cradle [3] on the ring: the injected
impurity scatters particles in the background gas until it

FIG. 3. The time evolution of the center of mass XðtÞ [Eq. (8)]
for the initial state (4) with a20 ¼ 1.125, Q ¼ π for N ¼ 8
particles on the length L ¼ 40 ring with interaction parameter
c ¼ 5, 10, 20 (points), and a noninteracting point particle with
mass m ¼ 1=2 and velocity Q=m (line). Inset: velocity of the
center of mass VðtÞ ¼ ΔXðtÞ=Δt (cf. Ref. [39]).
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loses most of its c.m. momentum. These scattered excita-
tions then propagate around the ring and subsequently
collide with the impurity, causing it to move once again.
This process repeats, leading to the stuttering, snaking
motion of the c.m. Quantum flutter, the exchange of
momentum back and forth between a delocalized impurity
and the background gas, has been studied in the Tonks-
Girardeau regime [39–44]. The momentum of the impurity
in the long-time limit was computed by means of the DE
and found to be small, but nonzero.
Our results are of direct relevance to experiments in cold

atomic gases; the observed physics should not be reliant
upon the integrability of the model (see, e.g., Refs. [40] and
[61]) and should survive finite temperature [87]. The results
discussed here may also be useful in elucidating the
properties of the TCLLM at finite temperature, where it
is likely that impuritylike solitons arise [88,89]. Finally, this
Letter provides a nontrivial check and validation of cutting-
edge theoretical results for the matrix elements of the
TCLLM in the extreme imbalance limit [53,60].
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