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Recent heat-capacity experiments show quite unambiguously the existence of a liquid 3He phase
adsorbed on graphite. This liquid is stable at an extremely low density, possibly one of the lowest found in
nature. Previous theoretical calculations of the same system, and in strictly two dimensions, agree with the
result that this liquid phase is not stable and the system is in the gas phase. We calculated the phase diagram
of normal 3He adsorbed on graphite at T ¼ 0 using quantum Monte Carlo methods. Considering a fully
corrugated substrate, we observe that at densities lower than 0.006 Å−2 the system is a very dilute gas that,
at that density, is in equilibrium with a liquid of density 0.014 Å−2. Our prediction matches very well the
recent experimental findings on the same system. On the contrary, when a flat substrate is considered, no
gas-liquid coexistence is found, in agreement with previous calculations. We also report results on the
different solid structures, and on the corresponding phase transitions that appear at higher densities.
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Recent heat-capacity measurements of 3He adsorbed on
graphite by Sato et al. [1,2] have shown that its monolayer
is a stable liquid in the density range 0.006–0.009 Å−2.
One of the most interesting aspects of this phase is its
extremely low density, with interparticle distances as large
as 10 Å, which could constitute one of the lowest-density
stable liquids in nature. This new finding has reopened an
old issue that has been under discussion for more than 30
years, i.e., the nature (gas or liquid) of two-dimensional
(2D) 3He [3,4]. Previous experiments showed contradictory
results, due in part to the different setups and employed
substrates [5–8]. Now, the new data from Ref. [1] on a clean
graphite substrate seem to incline the debate towards the
confirmation of this liquid phase existence.
On the theoretical side, there is a broad consensus on the

gas character of strictly 2D 3He [9–13]. However, the
practical need for a substrate to actually realize the 3He
monolayer could modify this result. Previous attempts to
calculate the properties of the adsorbed monolayer in a
strongly attractive substrate such as graphite arrived at the
same result. In Ref. [14], it is shown that the possibility of
3He atoms moving perpendicularly to the surface leads to a
stable liquid phase when the substrate is weakly attractive,
as on some alkali metal surfaces. This is probably expected
because the system goes from a 2D film to a three-
dimensional (3D) configuration where liquid 3He is the
ground-state phase.
In this work, we concerned ourselves with the adsorption

of 3He on a clean surface of graphite, trying to reproduce
the recent experimental findings of Sato et al. [1] Our goal
was to bridge the discrepancy between the strictly 2D
calculations and the experimental data by improving the

theoretical description of the system. Since considering a
quasi-two-dimensional flat adsorbent is clearly not enough
for graphite [14], we included the effects of the substrate
corrugation on the behavior of the adsorbate, in line with
what has been done previously for 4He on the same system
[15–22]. We found that a corrugated surface is the missing
ingredient for reconciling the experimental and theoretical
data. In addition, this approach allows us also to calculate
the entire phase diagram of 3He on graphite, including
the commensurate solids that cannot appear in a strictly
2D model.
Given the low temperatures involved in the experiments

(of the order of mK), it is reasonable to think that the
ground state of 3He on graphite is a reasonable description
of the system under consideration. To obtain it, we have to
solve the Schrödinger equation corresponding to the many-
body Hamiltonian,

H ¼
XN
i¼1

�
−
ℏ2

2m
∇2 þ Vextðxi; yi; ziÞ

�
þ
XN
i<j

VHe-HeðrijÞ;

ð1Þ

where xi, yi, and zi are the coordinates for each of the N
3He atoms, and m their mass. Following Ref. [15], graphite
was modeled by a set of eight graphene layers separated
3.35 Å in the z direction and stacked in the A-B-A-B way
typical of this compound. All of the individual carbon
atoms in each layer were considered. Vextðxi; yi; ziÞ was the
sum of all the C-He atomic interactions, calculated using
the Carlos and Cole anisotropic potential [23], which has
been widely used in calculations of 4He adsorbed on
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graphite. VHe-HeðrÞ is the standard Aziz potential [24],
which depends on the distance rij between the 3He atoms.
To solve the Schrödinger equation describing the system,

we used the diffusion Monte Carlo (DMC) method. For a
set of bosons, the DMC method allows us to obtain exactly
the energy of their ground state, within the statistical
uncertainties derived from the stochastic nature of the
method. However, when we deal with fermions, as in
the present case, the sign problem makes an exact calcu-
lation not possible. We follow the usual approach in which
one imposes that the nodal surface is the one of the trial
wave function used as the guiding function in the DMC
algorithm [25]. This approximation is known as the fixed-
node (FN) method and provides an upper bound to the
exact ground-state energy of the system. We chose as a trial
wave function

Φðr1; r2;…; rNÞ ¼ D↑D↓
Y
i<j

exp

�
−
1

2

�
bHe-He
rij

�
5
�
; ð2Þ

where r1; r2;…; rN are the helium coordinates. The param-
eter bHe-He in the Jastrow part of Eq. (2) was taken to be
2.96 Å, as in a purely two-dimensional system [9]. D↑ and
D↓ are Slater determinants that depend on the coordinates
of the spin-up and spin-down atoms, respectively. We
considered always an unpolarized phase, N↑ ¼ N↓ ¼
N=2. The single-particle functions entering those determi-
nants, ψðriÞ, were the solutions of the Schrödinger equation
derived from the one-body Hamiltonian that results from
dropping the interparticle interaction [the last term in
Eq. (1)]. Since Vextðxi; yi; ziÞ has the periodicity of the
underlying substrate, we can invoke Bloch’s theorem to
write [26]

ψðriÞ ¼ uðriÞk expðikxxi þ ikyyiÞ; ð3Þ

where uðriÞk obeys the Born–von Kármán periodic boun-
dary conditions (in 2D) with respect to the unit cell whose
replication defines the graphite structure. We chose as unit
cell one whose surface is 2.46 × 4.26 Å2, which includes
four carbon atoms in its upper layer (the ones that form
the characteristic hexagon of a honeycomb arrangement).
In general, uðriÞk depends on the reciprocal vector
k ¼ ðkx; kyÞ. Here, kx ¼ 2πn=Lx and ky ¼ 2πm=Ly, where
Lx and Ly are the sides of our rectangular simulation cell,
with n and m being integers. To describe the gas-liquid
transition, we used a cell of 73.79 × 72.42 Å2, i.e., with a
surface 30 × 17 times that of the unit cell defined above.
Introducing Eq. (3) into the Hamiltonian (1), the one-body
Schrödinger equation transforms into

HuðriÞk ¼
�
ℏ2

2m

�
1

i
∇þ k

�
2

þ Vextðxi; yi; ziÞ
�
uðriÞk

¼ EkuðriÞk: ð4Þ

We solved numerically this complex eigenvalue-
eigenvector problem by expanding

uðriÞk ¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlxlylzÞ

p Xnx
j1¼−nx

Xny
j2¼−ny

Xnz
j3¼1

cj1j2j3

× exp½iðj1gxxi þ j2gyyiÞ� sin½j3gzðzi − z0Þ� ð5Þ

and solving for the cj1j2j3 coefficients. Here, nx ¼ 4,
ny ¼ 6, and nz ¼ 30; gx ¼ 2π=lx, gy ¼ 2π=ly, and
gx ¼ π=lz; lx ¼ 2.46 Å, ly ¼ 4.26 Å, and lz ¼ 8 − z0 Å
(z0 ¼ 1.5 Å). The solutions of Eq. (4) were not required to
be real. We used the number of functions necessary to
assure us of an energy cutoff of 0.001 K. The ground state
of a single 3He atom obtained using this method was
Eð0;0Þ ¼ E0 ¼ −135.771� 0.001 K. A plot of uðx; y; z ¼
2.88Þð0;0Þ is displayed in Fig. 1, showing the corrugation of
the ground state. That value of z is the one for which the
value of the wave function is maximum.
Using the method described above, we obtained the

uðriÞk functions corresponding to the first band of the
periodic potential created by the graphite substrate. With
them, and using Eq. (3), we can construct the one-body
functions entering into the Slater determinants in Eq. (2).
However, we found that, at least for the first-band functions
we needed, all of the uðriÞk’s were real and independent of
k within the numerical errors derived from the procedure.
This transforms Eq. (2) into

Φðr1;r2;…;rNÞ¼D0↑D0↓Y
i

uðriÞ
Y
i<j

exp

�
−
1

2

�
bHe-He
rij

�
5
�
;

ð6Þ
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FIG. 1. Plot of uðx; y; z ¼ 2.88Þð0;0Þ, with its corresponding
contour map showing the corrugation of the one-particle part of
the trial wave function.
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with D0↑ and D0↓ representing the plane-wave Slater
determinants of the strictly 2D system [9,14]. We also
shifted the coordinates entering these Slater determinants
by introducing backflow correlations in the standard way:

~xi ¼ xi þ λ
X
j≠i

exp½−ðrij − rbÞ2=ω2�ðxi − xjÞ ð7Þ

~yi ¼ yi þ λ
X
j≠i

exp½−ðrij − rbÞ2=ω2�ðyi − yjÞ: ð8Þ

We tested to ensure that the best parameters in those last
equations were those corresponding to the full three-
dimensional homogeneous system [27], i.e., λ ¼ 0.35;
ω ¼ 1.38 Å, and rb ¼ 1.89 Å, instead of the ones corre-
sponding to a pure 2D system [9]. We made standard
checks on the mean population of configurations and time
step to reduce any systematic bias to the level of the
statistical noise. Also, we included standard finite-size
corrections to the energy coming from both the discretiza-
tion of the Fermi sphere and to the potential energy
contributions beyond the size of the simulation box.
The results of the DMC simulations that consider a fully

corrugated C-He potential are displayed in Fig. 2 as full
squares. As indicated above, we considered a simulation
cell of 73.79 × 72.42 Å2 including up to 130 atoms, half of
them with spin up, and the other half with spin down. That
figure also included the strictly 2D results of Ref. [9] as a
full line. To afford a comparison between the two sets of
data, in the first case we subtracted the energy in the infinite
dilution limit (E0) from the energy per particle (E=N).
What we see is that, apart from the limit when ρ → 0, there
is a sizable difference between both sets of data, including a
significant energy stabilization for the full quasi-two-
dimensional systems for ρ > 0.005 Å−2.

To check whether that decrease in the energy per particle
is due simply to the inclusion of the additional degree of
freedom in the z axis or there is something else, we
performed an additional FN-DMC calculation using an
averaged-over version of the external potential of Eq. (1) on
the z axis. Using a similar procedure to the one outlined
above, we obtained uðziÞ, the one-body part of the trial
function. The open symbols in Fig. 2 are the results of that
additional FN-DMC calculation. Here, as before, the
energy in the infinite dilution limit corresponding to the
adsorption of a single 3He atom on that flat graphite model
was subtracted. Its absolute value was slightly smaller than
that of the fully corrugated case (E0 ¼ −133.585�
0.001 K). For that second case, the energies per particle
are much closer to the ones corresponding to a pure 2D
system. This is in line with the prediction of Ref. [14] but
contradicts the results of Ref. [28], where only smoothed-
out substrates were studied.
In Fig. 3, we show the same corrugated data as in Fig. 2,

but as a function of the inverse of the 3He density. At first
sight, we can see that there is a nonstability zone around a
surface per particle of around 100 Å2. In that figure the
double-tangent Maxwell construction line is also displayed
(see Ref. [29] for details on its construction). This allows us
to see that there is indeed a first-order phase transition
between a dilute gas of density 0.006� 0.002 Å−2, and a
liquid one of 0.014� 0.002 Å−2. We can tentatively assign
that transition to the gas-liquid equilibrium suggested in
Ref. [1] for 3He on clean graphite. We have to stress also
that we did not use different trial wave functions for gas and
liquid phases, the instability appearing naturally when we
increase the helium density.
If we further increase the amount of helium adsorbed, the

system will undergo another phase transition, in this case to
a

ffiffiffi
3

p
×

ffiffiffi
3

p
registered phase, similar to that of 4He on
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FIG. 2. Energy per 3He atom (E=N) vs surface density for
corrugated (full symbols) and flat (open symbols) graphite. In
both cases, we subtracted the energy in the infinite dilution limit,
E0, to allow for a better comparison. The equation of state of a
pure 2D liquid given in Ref. [9] is also given for comparison.
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FIG. 3. Full corrugated results for the energy per 3He atom as a
function of the surface per particle. The line stands for the double-
tangent Maxwell construction to determine the equilibrium
densities of the gas and liquid phases.
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graphite. This is illustrated in Fig. 4. There, we plot the
energy per particle for a liquid (open squares), an incom-
mensurate solid (open circles), and several registered
structures (full symbols). The calculations for the liquid
phase, quite beyond the transition point, were done using
the same procedure outlined above but using a smaller
simulation cell, one with a surface of 44.28 × 42.6 Å−2. To
model the solid structures, we followed Ref. [15] and
multiplied the trial function of Eq. (2) by a Nosanow factor,

Y
i

expf−a½ðxi − xsiteÞ2 þ ðyi − ysiteÞ2�g; ð9Þ

where xsite; ysite are the coordinates of the crystallographic
positions of the solid structures and a was variationally
optimized (a ¼ 0.24 Å−2 for all of the lattices). To estab-
lish the boundaries between the liquid phase and the

ffiffiffi
3

p
×ffiffiffi

3
p

commensurate structure, we would have to do another
double-tangent Maxwell construction. We proceeded in the
same way as in the previous literature, by drawing the line
with the smallest negative slope that goes from the inverse
of the solid density and intercepts the liquid equation of
state. We found that the

ffiffiffi
3

p
×

ffiffiffi
3

p
solid is in equilibrium

with a liquid of density 0.039� 0.001 Å−2; i.e., the
stability range of the liquid is from 0.014� 0.002 Å−2

to 0.039� 0.001 Å−2. The latter value is in good agree-
ment with the experimental upper value for a liquid phase
found for a three-layer 3He system [6]. The smallest value
of the interval is compatible with the experimental lower
value for the same system [2].
The full symbols in Fig. 4 correspond to two commen-

surate solids already considered for quantum species on
graphite, the 31=75 structure (ρ ¼ 0.0789 Å−2, found for
D2 [30,31]), and the 7=16 structure (ρ ¼ 0.0835 Å−2,

proposed to be stable by Corboz et al. for 4He [32]). As
one can see in that figure, we found that those registered
solids are slightly more stable than the corresponding
incommensurate solids of the same density. In particular,
the energies per atoms are E31=75 ¼ −130.63� 0.02 K vs
EIC ¼ −130.30� 0.01 K, and E7=16 ¼ −129.09� 0.02 K
vs EIC ¼ −129.00� 0.02 K. This means that if we
increase the density beyond the one corresponding to theffiffiffi
3

p
×

ffiffiffi
3

p
structure (0.0636 Å−2), the system will undergo a

first-order phase transition to a registered 31=75 structure
that, upon further increase, will transform into a 7=16 one.
Obviously, the latter phase transitions are predicted to exist
in the limit of zero temperature, and they can be smoothed
out if the temperature is not low enough due to the small
energy differences obtained here. At higher densities, there
is a last transition into an incommensurate triangular solid.
Another Maxwell construction using the data shown in
Fig. 4 allowed us to obtain that the lower density limit of
this phase is 0.089� 0.005 Å−2.
The results presented allow us to give a coherent picture

that can incorporate all of the experimental results on 3He
on graphite. The very dilute density for the liquid phase
found in Refs. [1,5] (∼0.006 Å−2) is compatible with our
lower limit for the gas-liquid transition. This means that, for
the range 0.006 Å−2 < ρ < 0.014 Å−2, the system will
separate itself into a very dilute gas phase and puddles
of liquid of density 0.014 Å−2, in the right proportions to
produce the density we considered within that interval. So,
from 0.006 Å−2 up, we will have part of the surface
covered by a liquid. That coverage will be complete when
the overall 3He density is ρ ¼ 0.014 Å−2, in which all
graphite will be coated by a homogeneous liquid. That
liquid will be stable up to 0.039� 0.001 Å−2, in line with
the results of Ref. [6]. On the other hand, we see that 3He
presents two new stable registered phases at relatively high
densities. The only experimental support for the first one
(31=75) are the calorimetric measurements of Greywall [7],
in which a 3He first-layer solid phase on graphite at ρ ¼
0.076 Å−2 is considered. However, the phase proposed is a
2=5 one, which we found to be unstable with respect to an
incommensurate triangular solid of the same density. Our
results show that the main—and forgotten until now—
ingredient to satisfactorily describe the monolayer of 3He
on graphite is the use of a realistic C-He interaction instead
of smoothed or averaged surface-helium potentials.
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