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We have proposed a unified framework towards the dynamics of optical and electron vortex beams from
the perspective of the geometric phase and the associated Hall effects. The unification is attributed to the
notion that the spin degrees of freedom of a relativistic particle, either massive or massless, are associated
with a vortex line. Based on a cylindrical coordinate formulation, which leads to a local vortex structure
related to orbital angular momentum (OAM), it can be shown that, when electron vortex beams (EVBs)
move in an external electric field, paraxial beams give rise to an OAM Hall effect, and nonparaxial beams
with tilted vortices initiate a spin Hall effect in free space as well as in an external field. A similar analysis
reveals that the paraxial optical vortex beams (OVBs) in an inhomogeneous medium induce an OAM Hall
effect, whereas nonparaxial beams with tilted vortices drive the spin Hall effect. Moreover, both OVBs and
EVBs with tilted vortices give rise to OAM states with an arbitrary fractional value.
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Research into the properties of vortices has thrived since
a remarkable paper of Nye and Berry [1] described the
basic properties of dislocations in wave trains. They have
shown that in 3D space optical vortex beams (OVBs), in
general, contain dislocation lines when the phase becomes
singular and currents coil around the vortex line. When the
vortex line is parallel (orthogonal) to the wave propagation
direction, this is characterized as screw (edge) dislocation.
Also, there may be mixed screw-edge dislocations, which
are tilted with respect to the propagation direction.
Subsequently, it has been shown that the optical beams
with screw dislocations possess quantized orbital angular
momentum (OAM) directed along the beam axis [2] and
OVBs with mixed edge-screw dislocations with tilted
vortices carry OAM in an arbitrary direction [3]. An exact
solution of the Helmholtz equation can be constructed
possessing wave front dislocation lines in the form of loops,
links, and knots when we have a superposition of the Bessel
beams [4]. Since the Helmholtz equation corresponds to the
stationary situation of the Schrödinger equation in free
space, OVBs and nonrelativistic electron vortex beams
(EVBs) are expected to share similar geometric properties.
Indeed, the existence of EVBs in free space for non-
relativistic electrons has been predicted in Ref. [5]. Later,
EVBs carrying OAM have been produced experimentally
[6,7], and in the study of relativistic EVBs, the exact Bessel
beam solutions of the Dirac equation have been derived [8].
Recently, we have pointed out [9] that in the Skyrmionic

model of an electron, where it is depicted as a scalar
electron moving around a vortex line which is topologically
equivalent to a magnetic flux line giving rise to the spin
degrees of freedom, EVBs appear as a natural consequence.
The geometrodynamics of the vortex beams has been
analyzed from the perspective of the geometric phase
(Berry phase) [10]. When the Berry phase acquired by

the scalar electron encircling the vortex line involves a
quantizedDiracmonopole, we have a paraxial (nonparaxial)
beam with the vortex line parallel (orthogonal) to the wave
front propagation direction (z axis). If the vortex line is tilted
with respect to the propagation direction, the Berry phase
involves a nonquantized monopole. Bessel beams in the
paraxial case correspond to the situation when the polar
angle of the plane wave vector with the z axis θ0 → 0. For
nonparaxial beams with tilted vortices, Bessel beams cor-
respond to the situation when the polar angle θ0 takes an
arbitrary nonzero value. Within this framework, we have
investigated the propagation of electron vortex beams in a
magnetic field [11] and have also theoretically studied the
OAMHall effect and the spinHall effect of EVBs interacting
with a laser field [12]. Our motivation here is to propose a
unified framework towards the dynamics of OVBs and
EVBs from the perspective of the geometric phase.
To this end, we start with the note that, due to the

presence of the spin vector, the localization region of a
relativistic massless as well as massive particle is found to
be S3 [13,14]. Since S3 is equivalent to SUð2Þ and
S2 ¼ ½SUð2Þ=Uð1Þ�, the sphere S3 can be constructed from
the 3D compact space S2 by Hopf fibration. The Abelian
field Uð1Þ, which causes the Hopf fibration, corresponds to
a monopole bundle. The monopole bundle gives rise to the
spin of the system, and the magnetic flux line associated
with this effectively represents a vortex line. For an
electron, the monopole strength jμj ¼ 1

2
represents the

spin of the electron. In fact, the total angular momentum
of a charged particle in the field of a monopole is given by
~J ¼ ~L − μ~̂r, where ~L is the OAM and μ is the monopole
charge. When the OAM is zero, the total angular momen-
tum of the system, which is effectively the spin, is given by
jμj, with sz ¼ �μ. In this context, it may be added that spin
degrees of freedom are represented as a SUð2Þ gauge
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bundle. The general property of a non-Abelian gauge
theory is that, when the topological θ term is introduced
in the Lagrangian, a topologically nontrivial Abelian gauge
field corresponding to a vortex line (magnetic flux line)
arises in the configuration space [15,16]. The situation
essentially gives rise to a loop space when a vortex line is
enclosed by a loop. This depicts a fermion as a scalar
particle encircling a magnetic flux line representing the
spin degrees of freedom, which may be viewed as a
Skyrmion. In this framework, the vortex associated to
the Uð1Þ field corresponding to Hopf fibration may be
considered as a spin vortex. For a vector particle, such as a
photon, we can treat it as a composite of two spin 1

2
states,

and the spin is given by 2μ with μ ¼ 1
2
. Indeed, for an

anisotropic spin system with spin S ≥ 1, the effect of the
Dirac string can be avoided if we consider the spin system
as a correlated system of composite one-half spins [17].
Taking advantage of this formulation, we generalize the
result for the photon, a massless spin 1 particle.
The Berry phase acquired by a quantum particle while

traversing a closed path encircling magnetic flux lines is
given by 2πμ, μ being the corresponding monopole charge
[18]. When the monopole is located at the origin of a unit
sphere, the Berry phase is given by μΩðCÞ, where ΩðCÞ is
the solid angle subtended by the closed contour at the origin
and is given by

ΩðCÞ ¼
Z
C
ð1 − cos θÞdϕ ¼ 2πð1 − cos θÞ; ð1Þ

where θ is the polar angle of the vortex line measured from
the quantization axis (z axis). In case of OVBs (EVBs), the
beam field (scalar electron) orbiting around the vortex line
gives rise to this Berry phase. When the beam field (scalar
electron) rotating around the vortex line acquires a certain
quantized OAM l, the corresponding total phase is given
by 2πlþ ϕB, ϕB being the Berry phase. For quantized
OAM with l ∈ Z, the effective phase for such a system is
ϕB, as the factor 2πl leads to a trivial phase. The Berry
phase acquired by the beam field moving around the vortex
line in an OVB is thus given by ϕBðoÞ ¼ 2πð1 − cos θÞ,
as μ ¼ 1 corresponds to the photon spin. The phase
acquired by the scalar electron moving around the vortex
line in an EVB, where the relevant μ ¼ 1

2
, is given by

ϕBðeÞ ¼ πð1 − cos θÞ. Transforming to the reference frame
where the beam field (scalar electron) is considered to be
fixed and the vortex state (spin state) moves in the field of a
magnetic monopole around a closed path, ϕBðoÞðϕBðeÞÞ
corresponds to the geometric phase acquired by the vortex
state. The angle θ corresponds to the deviation of the vortex
line from the z axis. Equating ϕBðoÞðϕBðeÞÞ with 2πμ, we
find that the effective monopole charge associated with the
vortex line in an OVB (EVB) with polar angle θ measured
from the z axis is given by

μðoÞðμðeÞÞ ¼ ð1 − cos θÞ(
1

2
ð1 − cos θÞ): ð2Þ

Indeed, when θ ¼ 0, we have paraxial beams and corre-
spond to screw dislocation, whereas for θ ¼ ðπ=2Þ, we
have nonparaxial beams corresponding to edge dislocation.
However, for an arbitrary angle 0 < θ < ðπ=2Þ, we have
nonparaxial beams which correspond to mixed screw-edge
dislocation. In the latter case, these correspond to tilted
vortices. In both the cases of OVBs and EVBs, the
corresponding monopole charge μ is quantized for θ ¼ 0
and ðπ=2Þ, whereas for any arbitrary angle θ, with
0 < θ < ðπ=2Þ, the monopole charge is nonquantized.
For OVBs and EVBs, vortices are phase singularities

which appear when the corresponding waves are super-
posed. In cylindrical coordinate formulation, a local vortex
structure appears which is associated with the OAM. In the
case of EVBs, the solution of the Dirac equation in
cylindrical coordinates gives rise to Bessel beams [8].
The Dirac equation is given by (c ¼ ℏ ¼ 1)

i∂tψ ¼ ð~α · ~pþ βmÞψ ; ð3Þ

where ~α and β are the 4 × 4 Dirac matrices, ~p ¼ −i∂~r is the
momentum operator, and m is the electron mass. The
solution for the plane waves can be obtained using
cylindrical coordinates ðρ;φ; zÞ in real space and
ðp⊥;ϕ; p∥Þ ¼ ðp sin θ;ϕ; p cos θÞ in momentum space.
Assuming that the polarization amplitudes are the same
for all the plane waves, we obtain the solution [8] as

ψ l ¼
expðiΦÞffiffiffi

2
p

2
6664
� ffiffiffiffiffiffiffiffiffiffiffi

1þ m
E

p
wffiffiffiffiffiffiffiffiffiffiffi

1 − m
E

p
σz cos θ0w

�
eilφJlðξÞ þ i

0
BBB@

0

0

−β
ffiffiffiffi
Δ

p

0

1
CCCAeiðl−1ÞφJl−1ðξÞ þ i

0
BBB@

0

0

0

α
ffiffiffiffi
Δ

p

1
CCCAeiðlþ1ÞφJlþ1ðξÞ

3
7775; ð4Þ

where Δ ¼ ½1 − ðm=EÞ�sin2θ0. Here, p⊥0 ¼ p sin θ0,
p∥0 ¼ p cos θ0, θ0 being the fixed polar angle with the z
axis and Φ ¼ ðp∥0z − EtÞ, and ξ ¼ p⊥0r. The first term in
the square bracket represents a Bessel beam of the order of

l, ψ l ∝ JlðξÞeiðlφþΦÞ. The terms proportional to
ffiffiffiffi
Δ

p
re-

present the spin-orbit interaction (SOI) term. The local
vortex structure eilϕ in the wave packet is associated with a
magnetic-monopole-type gauge field contributing to the
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Berry connection. Indeed, considering a unit vector ~e
orthogonal to ~p, so that under variation of ~p, ~e moves
in the unit sphere ð~p=pÞ, a magnetic-monopole-type

connection ~A is generated through the variation of ~p as

~A ¼
�
iðex − ieyÞ

∂
∂ ~p ðex þ ieyÞ

�
: ð5Þ

Noting that eilϕ ¼ ðex þ ieyÞl, we can write the OAM-

dependent gauge field as ~A
ðlÞ ¼ l ~A.

For a monochromatic paraxial electromagnetic beam
propagating in a smoothly inhomogeneous isotropic
medium with definite values of spin angular momentum
(SAM) and OAM, the beam’s electric field can be described
[in local cylindrical coordinate (ρ;ϕ; z)] as [19]

Eρ;l;s ¼ ~esFp;jljðρÞ exp
�
ilϕþ i

Z
kdz

�
: ð6Þ

Here, kðzÞ is the central wave vector directed along the
beam axis z, ~es is the unit vector depicting the polarization
of the wave with the helicity sz ¼ �1, Fp;jlj is the radial
function with quantum number p ¼ 0; 1; 2;…; n, and l is
the azimuthal quantum number with l¼0;�1;�2;…;�p,
which is the value of the intrinsic orbital angular momen-
tum. The expression is valid in the diffractionless approxi-

mation. The variation of the ray direction ~k gives rise to a
parallel transport law. Indeed, the spin-related Berry con-
nection in momentum space associated with the monopole
may be represented as

~A
ðsÞ ¼ i~es

† ∂
∂~k ~e

s; ð7Þ

with s ¼ 2μ and μ ¼ 1
2
. The Berry connection is associated

with the monopole bundle which essentially gives rise to
the spin degrees of freedom. However, for OAM, the Berry
connection is also ofmagneticmonopole type and is realized
when we take resort to the local cylindrical coordinates. The
OAM-related Berry connection is represented as

~A
ðlÞ ¼ i

Z
2π

0

e−ilϕ
∂
∂~k e

ilϕ ¼ l ~A: ð8Þ

For paraxial beams in both EVBs and OVBs as θ ¼ 0, we
have a vanishingBerry phase and there is no SOI. There is an
OAM Hall effect due to the Berry connection associated
with the local vortex structure eilϕ. Indeed, for EVBs in an
external electric field, electrons are accelerated, and the
anomalous velocity caused by the Berry curvature associ-

ated with the connection ~A
ðlÞ

is given by

~v ¼ _~p × ~ΩðlÞð~pÞ ¼ l _~p ×
~p
p3

: ð9Þ

Here, the dot denotes the derivativewith respect to time. This
leads to the OAM Hall effect in EVBs. In the OAM Hall
effect, we have splitting of beams with opposite values of l
giving rise to the transverse current of OAM. A similar

situation arises for paraxial beams (monochromatic vortex
waves) in OVBs in a smooth inhomogeneous mediumwhen

the Berry curvature is related to the connection ~A
ðlÞ
. In an

inhomogeneousmediumwith refractive indexnð~rÞ, we have
_~k ¼ k ~∇ln n; _~r ¼ ~k

jkj þ
_~k × ~ΩlðkÞ; ð10Þ

with ~ΩlðkÞ ¼ lð~k=k3Þ. Here, the dot denotes the derivative
with respect to z. This leads to the ray deflection δ~r ¼R
~Ωlð~kÞ × d~k in the paraxial case and corresponds to the

OAM Hall effect. However, for OVBs and EVBs in the
paraxial regime, there is no contribution from the spin-
related Berry curvature. This is evident from the expressions
of ϕBðoÞ and ϕBðeÞ that show the vanishing of the relevant
Berry phases for both cases.
The nonparaxial OVBs and EVBs with tilted vortices

involve SOI and nonquantized monopole charge that
realizes the spin Hall effect. It is known [17,20] that the
monopole charge μ, dependent on a certain parameter λ, in
3þ 1 dimensions undergoes the renormalization group
(RG) flow with the properties (i) μ is stationary at some
fixed points λ� of the RG flow, where μðλ�Þ is equal to the
monopole charge μ having quantized values 0, � 1

2
, �1;…;

(ii) μ decreases along the RG flow as Lð∂μ=∂LÞ ≤ 0, where
L is a length scale [17,20]. Transforming the length scale to
the time scale by L ¼ ct, a time-dependent monopole
charge ~μðtÞ is accomplished that is nonquantized. Both
EVBs and OVBs with tilted vortices are characterized by
~μðtÞ, which is the monopole charge associated with the
corresponding vortex line.
In the case of EVBs, the time dependence of the

associated gauge field generates an electric field. As a
result, the electrons are accelerated, giving rise to an
anomalous velocity. Indeed, we can introduce a noninertial
coordinate frame with basis vector ð~f; ~w; ~uÞ, attached to the
local direction of momentum ~u ¼ ð~p=pÞ. This coordinate
frame rotates as ~p varies with time. Such a rotation with
respect to a motionless (laboratory) coordinate frame

describes a precession of the triad ð~f; ~w; ~uÞ, with some
angular velocity. Let us restrict the direction of the vortex
line at any instant of time as the local z axis representing the
direction of propagation of thewave front. This corresponds
to the paraxial beam in the local frame such that the local
value of ~μ is changed and attains the quantized value μ ¼ 1

2
,

which follows from the precession of the spin vector. In the
local noninertial frame, this corresponds to the pseudospin.
The pseudospinvector is parallel to themomentumvector ~p.
Now an anomalous velocity ~va will arise due to the Berry

curvature ~Ωsð~pÞ ¼ μð~p=p3Þ, and we write

~va ¼ μ _~p ×
~p
p3

: ð11Þ
The anomalous velocity is perpendicular to the pseudospin
vector and points along the opposite directions depending
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on the chirality sz ¼ þ 1
2
ð− 1

2
Þ corresponding to μ > 0

ð< 0Þ. This gives rise to a spin Hall effect. ~va in Eq. (11)
can be rewritten in terms of the unit vector ~u ¼ ð~p=pÞ and its
time derivative _~u as ~va ¼ μ _~u × ~u:Denoting ð _~u=j _~ujÞ ¼ ~n, we
note that the spin current is orthogonal to the local plane
(~u; ~n) and the spin Hall effect can be understood as a
Coriolis-type transverse deflection and represents a real
deflection of the wave trajectory [9].
A similar situation arises for OVBs in a smooth

inhomogeneous medium. The OVBs with tilted vortices
give rise to a spin Hall effect of light or an optical Magnus
effect [21]. In an inhomogeneous medium, with refractive
index nðrÞ, we have

_~k ¼ k ~∇ln n; _~r ¼
~k
k
þ _~k × ~ΩsðkÞ; ð12Þ

with ~Ωsð~kÞ ¼ ð2μÞð~k=k3Þ. Here, the dot denotes the derivative
with respect to z. ~Ωsð~kÞ is the Berry curvature ð2μÞð~k=k3Þ,
2μ corresponding to the helicity þ1 or −1 depending on

μ > 0 ðμ < 0Þ. The second term in the equation for _~r
corresponds to the transverse deflection which gives rise to
the spin Hall effect. This essentially leads to the ray deflection

given by δ~r ¼ R
~Ωsð~kÞ × d~k in the nonparaxial case.

This spin Hall effect basically corresponds to a polari-
zation-dependent trajectory perturbation. Since for the
nonparaxial beams with tilted vortices the OAM vector
is noncollinear with the momentum vector [3], there will be
no contribution from the OAM-related Berry curvature ~Ωl

for both the cases of OVBs and EVBs.
The SOI involved in the nonparaxial beams modifies the

OAM (~L) and SAM (~S) of the EVBs and OVBs as well.

Introducing the mapping ~L → l~̂z, ~S → s~̂z, we note that, for
EVBs with tilted vortices which incorporate nonquantized

monopole charge ~μ, the expectation values of ~~L and ~~S are
modified as [9]

h~~Li ¼ ðl − ~μÞ~̂z; h~~Si ¼ ðsþ ~μÞ~̂z; ð13Þ
which follows from the relation ~~Lþ ~~S ¼ ~Lþ ~S. Thus, for

EVBs with tilted vortices just like a pseudospin ~~S, an OAM

is generated denoted by ~~L, which can take any arbitrary
fractional value. The third component of the pseudospin
can take any arbitrary value between − 1

2
and þ 1

2
, and as

such for fractional OAM, apart from the integer part l, the
fractional component ~μ lies between 0 and 1.
For OVBs, the expectation value of the spin vector is

given by h~Si ¼ hψ j~σjψi and ~S2 ¼ 1. For tilted vortices the
SOI will induce a change in the expectation value of SAM

as well as of OAM, and the modified pseudospin h ~~Si and
OAMh ~~Li are given by

h ~~Si ¼ ðs − 2~μÞ; h ~~Li ¼ ðlþ 2~μÞ: ð14Þ

It is noted that the third component of the pseudospin can
take any arbitrary value betweenþ1 and −1. The OAM can
take any arbitrary fractional value such that, apart from the
integer part, the fractional component lies between 0 and 1.
A quantum mechanical formulation of fractional OAM

has already been developed [22]. Unlike the integer OAM
states, the fractional OAM states require the introduction of
an additional parameter denoting the orientation of the
phase discontinuity. In fact, as these states involve non-
quantized monopoles, the wave function becomes multi-
valued. This can be rendered a single-valued function by
introducing a branch cut, the position of which is taken to
be the position of the discontinuity [22]. The functional
time dependence of the nonquantized monopole charge,
which is evident from the RG flow, implies that the beams
with fractional OAM will be unstable on propagation.
Stability can be attained if the effect of the Gouy phase
associated with the superposition of Laguerre-Gaussian
modes generating OVBs can be regulated [22]. A similar
situation may be developed for the propagation of EVBs in
an external magnetic field [11]. The vortex structure of light
emerging from a fractional phase step is characterized by a
chain of alternating vortices such that every pair of it forms
a hairpin when the vortices converge at a common turning
point [23,24]. In the present formalism, the fractional OAM
is generated when the relevant Berry phase involves a
nonquantized monopole, and we have to consider the effect
of the Dirac string. Indeed, this requires the introduction of
a topological term in the Berry phase apart from the usual
geometric component [25]. However, the effect of Dirac
string can be avoided when we consider the entangled pairs
of spins in a spin system [17]. Since the vortices in OVBs
and EVBs are considered as spin vortices, entangled pairs
of vortices may be viewed as entangled pairs of spins. The
dynamics of the EVBs and OVBs can be studied as a model
of a spin system, and the entangled pair of spins may
represent a pair of entangled vortices. One can easily argue
that the entangled pair of tilted vortices involves alternating
vortices and forms the structure of a hairpin. Conclusively,
the vortex structure of OVBs and EVBs with fractional
OAM can thus be characterized by a chain of pairs of
alternating vortices forming the shape of hairpins. The
study of fractional OAM in the context of two-photon
entanglement [26] may inspire one to study the similar
features in two electron entangled states.
The advancement of experiments [27] on vortex beams

and their wide range of applications [7,27–29] mark the
significance of a unified theory for the dynamics of OVBs
and EVBs. The vortex beams carrying OAM can be
produced by spiral phase plates and various other devices
[27]. The spiral phase plates with noninteger phase steps
[30] as well as special holograms [31] have been used to
generate light beams with fractional OAM. Moreover,
spatial light modulators or lasers emitting helical
Laguerre-Gaussian modes can be used to produce OVBs
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[7]. The OAM carried by the optical beam field helps it to
trap and rotate colloid particles and living cells and to act as
an optical spannerwhich can be used invarious applications
[28,29]. Individual photons carrying OAMmake it possible
to be used in the theory of quantum information processing
[28]. EVBs can be produced by making a versatile holo-
graphic reconstruction technique in a transmission electron
microscope [7]. Electron vortices are used for the magnetic
state mapping [7]. This key idea becomes very useful for
condensed matter physics and material science, as it bridges
atomic scale resolution with the local magnetization inside
samples and also plays a decisive role in the context of
spintronics device applications. Both OVBs and EVBs have
been used to observe the effect of dynamic electron
correlations in the interaction of atoms and molecules [29].
Recently, apart from the EVBs and OVBs, acoustic vortex

beams have been studied in paraxial and nonparaxial regimes
[32–36]. Acoustic vortex beams (AVBs) with an extra
azimuthal phase dependence carry orbital angularmomentum
and have a helicoidal wave front [32,35]. The similarity
between the linearized elasticity equations and Maxwell
equations facilitates mapping polarization phenomena in
optics into transverse acoustic waves [36]. AVBs were
analyzed beyond the paraxial approximation in Ref. [35]
to clarify an analogy with optical vortex beams. The
Hamiltonian of the transverse acoustic waves contains a term
which can be viewed as the SOI of phonons [36]. Like
electrons and photons, the SOI of phonons is caused by the
Berry gauge potential describing parallel transport inmomen-
tum space [36]. The Berry connection is related to the
oppositely charged magnetic monopoles located at the origin
in momentum space corresponding to the phonons with
opposite helicities. This leads to the transport of angular
momentum of phonons analogous to the spin Hall effect. The
indication of this analogy encourages one to study in detail the
dynamics of AVBs in the framework of the geometric phase.
In summary, we have analyzed the dynamics of optical

and electron vortex beams from the viewpoint of the
geometric phase in a unified way where the OAM Hall
effect and the spin Hall effect play a crucial role.
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