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We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric)
instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric
resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching
dynamics is dramatically affected by the competition between the two instability mechanisms, which
dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the
stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we
observe the crossover between the Turing and Faraday periodic structures. The results are well explained in
terms of the universal Lugiato-Lefever model.
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Introduction.—Dissipative spatial (localized and pat-
terned) structures are ubiquitous in nonlinear extended
biological, chemical, and physical systems operating far
from equilibrium [1–4]. A universal triggering mechanism
is the Turing (modulational) instability, which, owing to a
symmetry breaking bifurcation, favors the growth of
modulations against the homogeneous solutions [5,6].
This growth eventually saturates, giving rise to patterns
with intrinsic wave numbers which attract the dynamics.
On a completely different basis, in systems forced at
frequency ωd, the characteristic wave number k is selected
via the dispersion relationship and a 2∶1 parametric
resonance to fulfill the relation ωðkÞ ¼ ωd=2 (generally
also multiple 2m∶1 resonances, m integer, are possible in
unstable regions known as Arnold tongues [7]). This
phenomenon, discovered by Faraday in a vertically vibrat-
ing fluid [8] and explained much later [9,10], is at the origin
of Faraday waves observable in different areas of physics
[11–15]. While the Turing and Faraday mechanisms have
different physical origins, they can in principle coexist.
However, the observation of the effects of their competition
is surprisingly lacking.
In this Letter, we consider a bistable system and report

experimental evidence for the fact that such competition
drastically changes its switching dynamics. We employ a
passive fiber resonator where such instabilities manifest
themselves in the time domain [16–19]. Passive micro-
resonators and fiber rings, all described by transpositions of
the universal Lugiato-Lefever equation (LLE) introduced in
the spatial case [6], have indeed proven extremely effective
for the observation of temporal dissipative structures such as
solitons and primary frequency combs [20–27]. In our
experiments, we engineer the resonator to have periodic
group velocity dispersion (GVD) with normal average value.

The GVD management acts as a spatial forcing, while the
normal GVD guarantees high gain for the Faraday branch
[28], even though it makes the excitation of Turing structures
much more critical [19,29]. This regime allows us to give
spectral evidence for the spontaneous formation of periodic
structures, which follows two different novel scenarios: (i) at
relatively small detunings from resonance, switching occurs
from homogeneous state to Faraday structures, with the
Turing instability only acting as a trigger; (ii) crossover from
periodic structures of the Turing and Faraday types can occur
at large detunings by controlling the pump power. Such
results pave the way towards the control and taming of the
instabilities via induced periodicity in a variety of different
settings [28,30,31].
General behaviour.—We consider the passive fiber ring

cavity sketched in Fig. 1(a) with varying dispersion
[Fig. 1(b)], which is well modeled by the LLE [6,28]:
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βðzÞ¼β2ðzÞ=jβav2 j. L is the cavity length, T0¼
ffiffiffiffiffiffiffiffiffiffiffiffijβav2 jLp

,
β2ðzÞ ¼ d2k=dω2 is the periodic GVD, with average value
βav2 , and γ is the fiber nonlinearity. Z, T, and E denote
real-world distance, group velocity delayed time, and the
intracavity field envelope, respectively. S is the driving
term such as S ¼ ffiffiffiffi

P
p ¼ θuin, where θ is the coupler

transmission coefficient (ρ2 þ θ2 ¼ 1) and uin ¼
ffiffiffiffiffiffi
γL

p
Ein

is the normalized input field. δ is the cavity detuning
and α describes the total losses (output coupling, linear,
and splicing losses). In the following, we will refer to the
normalized detuning defined as Δ ¼ δ=α.
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The steady-state homogeneous solutions (i.e., ∂z¼∂t¼0)
of Eq. (1) can become unstable against the growth of optical
modulations at frequency ω, following either a Turing
mechanism [16,17], or a Faraday mechanism when forcing
is present [28]. The most unstable frequency and the relative
gain in the Turing case are [16,17,32]

ωT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

βav
ðδ − 2PuÞ

s
; gðωTÞ ¼ Pu − α; ð2Þ

where βav ¼ βav2 =jβav2 j ¼ 1 and Pu ¼ juj2 are the normal-
ized average GVD and intracavity power, respectively.
Conversely, when forcing with period Λ [periodicity of
β2ðzÞ in units of cavity length L] is present, it follows from
Floquet theory that parametric (Faraday) instabilities set in
around multiple frequencies [28,32]

ωm ¼
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m ¼ 1; 2;…. (m ¼ 1 in the experiments), which represent
the tips of Arnold tongues. Importantly, at frequencies ωm in
Eq. (3), the perturbation wave number equals an integer
multiple m of half the forcing wave number π=Λ, which
corresponds indeed to the parametric resonance condition
[28,32] (with inverted role of k and ω with respect to the
spatial case mentioned before). The large difference of
frequency between the sidebands of Turing (ωT) and
Faraday (ωm) types is the distinctive trait which allows us
to unequivocally identify the different regimes of instability
in our experiments. Note that Turing instabilities are of
different physical origin with respect to the ones in the
normal GVD regime observed in conservative settings which
do require the periodicity [35–37]. In order to understand
how the controlling parameters, namely, power and detun-
ing, affect the behavior of the system, we summarize in
Fig. 1(d) the domains of the different instabilities in the
parameter plane ðΔ; PuÞ. For better clarity, we also report in
Fig. 1(c) the steady-state response for different values of
detuning, namely, Δ ¼ 1, 4 and 6.25. For Δ ≥

ffiffiffi
3

p
, the

cavity is bistable [6,16], and exhibits an unstable negative
slope branch for P−

u < Pu < Pþ
u , where P�

u ðΔÞ stand for
the bistability knees, delimiting the domain labeled
“Inaccessible” in Fig. 1(d).
Below such domain, the green area corresponds to the

region where temporally modulated Turing structures can
be excited. This region has been computed numerically and
corresponds to the tiny domain where Turing structures,
which bifurcate subcritically, can be spontaneously formed
[34]. We emphasize that this regime requires one to drive
the cavity with a detuning Δ > 4.25, and with powers
belonging to a small portion of the lower branch of the
bistable response [highlighted in green over the bistable
curve forΔ ¼ 6.25 in Fig. 1(c)]. It is important to emphasize
that this regime only depends on the average GVD and not

on its periodic modulation and would thus also appear in
uniform cavities. On the contrary, Faraday structures only
develop when the cavity is driven over the upper branch and
the periodic longitudinal variations are effective. As a result,
the stable excitation of Faraday structures requires one to
operate in the blue domain of Fig. 1(d). At higher powers,
such structures destabilize leading to chaotic states [see
upper portion of Fig. 1(d)]. Note that the Faraday branch
(unlike the Turing one) extends also to the monostable
regime Δ <

ffiffiffi
3

p
. However, in this Letter, we focus on the

bistable regime where the two instabilities can compete
thereby drastically changing the bistable switching dynam-
ics. In particular, Fig. 1(d) allows us to envisage two distinct
regimes that we experimentally address: (i) at low detuning
(Δ < 4.25, see vertical line A) switching occurs between the
steady-state lower branch and an upper branch which is
Faraday unstable. In this case the Turing instability can only
favor such switching, whereas no stable Turing structures
can be created; (ii) at high detunings (Δ > 4.25, see vertical
line B), switching between Turing and Faraday structures
can be controlled by the power. A careful stabilization of the
cavity allows us to accurately control the detuning and
observe the scenarios (i) and (ii).
Experiments.—We built a fiber ring cavity presenting the

piecewise constant dispersion profile shown in Fig. 2(b).
The ring has a total length of 51.6 m, and is composed of a

(a) (b)

(c) (d)

FIG. 1. (a) Schematic illustration of a nonuniform passive fiber
ring cavity. (b) Piecewise constant dispersion map over one
period of the GVD. (c) Normalized steady-state curves for
detuning values Δ ¼ 1, 4 and 6.25. (d) Instability domains in
a cavity with dispersion map as in (b) in the plane (Δ, Pu). The
“Inaccesible” region corresponds to the negative-slope branch of
the steady state. The green and blue domains represent the
regions where Turing and Faraday modulated structures can be
excited (at higher powers the Faraday structures destabilize
giving rise to chaotic spatio-temporal evolutions). The bullets
labeled 1, 2, 3, and 4 indicate the corresponding experimental
results of Figs. 3 and 4. Parameters: Λa ¼ 0.97, Λb ¼ 0.03,
βa ¼ 1.5, βb ¼ −14, α ¼ 0.157, θ2 ¼ 0.1, Λ ¼ 1: the period of
the GVD equals the length of the resonator.
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50-m-long, specially designed dispersion shifted fiber
(DSF, with GVD β2 ¼ 2 ps2=km) directly spliced to the
two pigtails (total length 1.6 m ) of the input-output coupler
made of a standard single-mode fiber (SMF-28 with GVD
β2 ¼ −19 ps2=km). The average nonlinear coefficient is
γ ¼ 5.5=W=km. The cavity is pumped at 1550 nm (well
below the average zero dispersion wavelength of 1562 nm),
where the values of GVD reported above give a normal
average dispersion βav2 ≈ 1.35 ps2=km. The experimental
setup is sketched in Fig. 2(a).

In order to validate the general behavior depicted in
Fig. 1(d), we contrast experiments made at relevant values
of the normalized detuning, namely, Δ ¼ 4 and 6.25.
Figure 3 shows the results obtained for Δ ¼ 4 [vertical

dashed line labeled A in Fig. 1(d)]. For input powers below
1.7 W we do not observe any spectral signature of periodic
structures in the output spectrum. Indeed the system is stable
and simply follows the lower branch of the steady-state
response shown in Fig. 3(a). However, when the power
exceeds the threshold for the unstable region [hatched region
in Figs. 3(a) and 3(b)], the system jumps on the upper
branch. The latter is unstable owing to m ¼ 1 parametric
(Faraday) resonance as shown by the gain tongues in
Fig. 3(b). Consistently, we observe stable generation of
Faraday (primary and harmonics) sideband pairs, as shown
by the spectra reported in Figs. 3(c) and 3(d), corresponding
to two specific points (labeled 1 and 2) on the upper branch.
These are in excellent agreement with spectra (dashed red
curves) calculated from numerical simulations of the
LLE (1). Moreover, the sidebands appear at 1.24 and
1.22 THz, for case 1 and 2, respectively, thus confirming
the expected downshift for increasing power [see close-up
inset in Fig. 3(d)], in good agreement with the estimate from
Eq. (3) which gives 1.26 and 1.23 THz, respectively (vertical
grey lines). We also notice a strong amplitude asymmetry
between the harmonics, which numerical simulations of
the extended LLE allow us to attribute to the third-order
dispersion that induces further symmetry breaking, as
pointed out in uniform passive cavities [23]. Finally notice
that in this regime (i.e.,Δ < 4.25), periodic Turing structures
cannot be observed because they bifurcate subcritically,
remaining unstable in the relevant range of powers [34].
Yet, the Turing instability still plays a crucial role, being
responsible for inducing the upswitching at the input power
∼1.8 W [obtained from the dimensionless threshold Pu ¼ α
arising from g ¼ 0 in Eq. (2)], thus lowering the threshold
for the formation of Faraday structures below the knee point
P−u [∼2.1 W; see Fig. 3(a)].

(a)

(b) (c)

FIG. 2. (a) Experimental setup [32]. (b) GVD map of the cavity
over one round trip, centered on the 90=10 SMF coupler. The
gray horizontal line gives the average GVD βav2 at pump wave-
length 1550 nm (arrow on the right vertical axis, calibrated in
terms of wavelengths). (c) Normalized transfer functions of the
cavity for the control beam (dashed red) and the nonlinear beam
in the linear regime (blue).

(a) (b) (c)

(d)

FIG. 3. (a) Bistable response of the cavity calculated for Δ ¼ 4 (δ ¼ π=4.5 rad, α ¼ 0.175); the hatched region is inaccessible.
(b) Pseudocolor level plot of the gain spectrum as a function of the intracavity power calculated from Floquet analysis [28]. (c),(d)
Comparison of experimental spectra (solid blue), spectra obtained from numerical integrations of the periodic LLE (1) (dashed red), and
analytical estimates (vertical line, theory) from Eq. (3) withm ¼ 1 for two different powers labeled 1 and 2 on the upper branch (see also
Fig. 1): (c) Pin ¼ 3.16 W; (d) Pin ¼ 1.97 W. Inset: close-up view of the sideband for the two powers.
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A similar experiment is presented in Fig. 4 for Δ ¼ 6.25
[vertical dashed line labeled B in Fig. 1(d)]. At variance
with the previous case, the measured spectrum exhibits the
stable formation of sidebands over the lower branch. An
example is shown in Fig. 4(d), where the primary sidebands
are located at 0.70 THz. This is consistent with the fact
that, while the periodic solutions corresponding to Turing
structures continue to bifurcate subcritically, a stable
branch exists for a finite range of input powers, as shown
by the green curve in Fig. 4(a). Note that this range is quite
limited despite the fact that the lower branch is significantly
more extended in terms of input powers (compared with
Δ ¼ 4 case). Then, when the power exceeds the value
where the Turing branch merges on the stationary response,
the Turing instability induces up-switching towards the
upper branch. As described above, however, this branch
presents narrowband Faraday instability [see Fig. 4(b)]
and hence two sidebands are still observed in the spectra
[see Fig. 4(b)], though at much larger frequency (1.16 THz).
As can be seen, experimental spectra (blue curves) in
Figs. 4(c) and 4(d) are in excellent agreement with numerical
simulations (dashed red curves) and with the analytical
predictions of the positions for the sidebands (vertical grey
lines, 0.69 THz and 1.15 THz, respectively). The large
difference of frequency shifts between Figs. 4(c) and 4(d)
allows us to claim that we have unambiguously observed the
crossover between the two instabilities.
Figure 5 shows how the steady-state output spectrum

changes when we adiabatically increase the input power. It
clearly illustrates the two distinct scenarios of switching
dynamics. In Fig. 5(a), for Δ ¼ 4, we observe the abrupt
appearance of the Faraday instability sidebands when the
input power exceeds 1.7 W, which is in good agreement
with the predicted switching threshold of 1.8 W [Fig. 3(a)].
Conversely, for Δ ¼ 6.25, Fig. 5(b) first shows the power-
induced tuning of the low-frequency Turing sidebands,
until eventually the abrupt switching to higher frequency
sidebands which is the clear signature of the crossover to
the Faraday branch. The Turing sidebands over the lower
branch are observed in the range of input powers 3.4–3.9 W,

which is slightly lower than the theoretical expectation
3.9–5W [see Fig. 4(a)]. We attribute such larger discrepancy
to the fact that the bistable response of the system is
increasingly sensitive to environmental fluctuations because
of the large detuning. Indeed, in this case, we consistently
observe typically up to 15% variations in the power thresh-
old between repeated runs of the experiment.
It is important here to emphasize that all these spectra

can remain stationary for about 10 min which correspond to
a few billion round trips. Until now, the evidence for the
sidebands due to the Turing instability in a uniform passive
fiber cavity were only given in the transient regime [34,38]
or associated with period-doubling dynamics [18]. Our
results thus constitute the first experimental observation of

(a) (b) (c)

(d)

FIG. 4. As in Fig. 3 forΔ ¼ 6.25 (δ ¼ π=3.2 rad, α ¼ 0.157). Here the two spectra in (c) and (d) are relative to points (labeled 4 and 3)
on two different (upper and lower) branches corresponding to (c) Pin ¼ 5.02 W (4.27 W in experiment); (d) Pin ¼ 3.9 W (3.55 W in
experiment). Estimated frequencies (theory) are from Eq. (3) with m ¼ 1 in (c) and from Eq. (2) in (d).

(a)

(b)

FIG. 5. Experimental optical spectra at the cavity output vs
input power for (a) Δ ¼ 4 and (b) Δ ¼ 6.25. The numbered
horizontal lines refer to the spectra shown in Figs. 3 and 4.
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stationary modulational instability spectra on both the
lower and upper branches of the bistable response of a
passive cavity.
Conclusions.—We have reported the first example of a

bistable system whose dynamics is dramatically affected by
the excitation of modulated structures due to competing
Turing and Faraday branches. As our experiments unam-
biguously show, either the system can exhibit direct up-
switching to Faraday 1D temporal patterns or crossover from
Turing to Faraday modulated structures. These results
demonstrate the feasibility of controlling the dynamics
of a bistable system via periodic modulations. Besides being
of interdisciplinary interest for nonequilibrium systems,
this could find immediate application for mode-locking,
frequency comb, and soliton generation in normally dis-
persive microresonators [27,39,40].
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