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We establish a precise connection between discrete wavelet transforms and entanglement renormaliza-
tion, a real-space renormalization group transformation for quantum systems on the lattice, in the context of
free particle systems. Specifically, we employ Daubechies wavelets to build approximations to the ground
state of the critical Ising model, then demonstrate that these states correspond to instances of the multiscale
entanglement renormalization ansatz (MERA), producing the first known analytic MERA for critical
systems.
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In recent years tensor networks [1] have emerged as an
exciting approach to both quantum mechanics and stat-
istical mechanics that combine ideas of many-body physics
with quantum information, while closely connecting sim-
ulation and analytic theory. An intriguing development
within tensor networks is the multiscale entanglement
renormalization ansatz (MERA) [2–4], designed to imple-
ment real-space renormalization group (RG) [5] ideas in a
powerful numerical algorithm which accurately captures
scale invariance and critical point behavior.
For a D-dimensional physical system, the MERA is

constructed as a (Dþ 1)-dimensional tensor network,where
layers in the extra dimension encode ground state correla-
tions at different length scales. Within a numerical setting,
MERAhave been demonstrated [6–12] to accurately capture
the critical long range behavior of lattice versions of
conformal field theories (CFTs) [13,14], which are used
to describe critical points.MERAalso provides a framework
to investigate the AdS=CFT correspondence, with the extra
dimension of the MERA associated with a physical space-
time dimension, making tensor networks an important topic
in quantum gravity and string theory [15,16].
Wavelets and wavelet transforms (WTs) [17–21], one of

the most significant developments in signal and image
processing in several decades, are also closely tied to RG:
ideas from RG influenced the development of wavelets, and
wavelets have proved to be a useful tool in RG applications
[22]. In fact, it is natural to think of compact, orthogonal
WTs, such as the well-known families of WTs introduced
by Daubechies [17,20], as being real-space RG trans-
formations, but in the space of ordinary 1D functions
rather than in terms of Hamiltonians or Lagrangians. Given
the close connections to real-space RG of both MERA and
wavelets, it is natural to ask if these two methods are
connected more deeply to each other.
Here we show that this is, indeed, the case, and report on

a precise relation between WTs and the MERA, that a
wavelet analysis of a free particle system can be exactly
mapped to a MERA. An important development results

from this connection: we find the first analytic MERA that
accurately approximates the ground state of a critical
system, whereas previous constructions have always
resulted from a complicated variational optimization. For
the lowest order case, the two unitary gates w and u that
constitute a (binary) scale-invariant MERA [4,6] can be
written in a remarkably compact form,

w ¼
ffiffiffi
3

p þ ffiffiffi
2

p

4
II þ

ffiffiffi
3

p
−

ffiffiffi
2

p

4
ZZ þ ið1þ ffiffiffi

2
p Þ

4
XY

þ ið1 − ffiffiffi
2

p Þ
4

YX

u ¼
ffiffiffi
3

p þ 2

4
II þ

ffiffiffi
3

p
− 2

4
ZZ þ i

4
XY þ i

4
YX; ð1Þ

where X, Y, Z are Pauli matrices, and where ZZ is short for
Z ⊗ Z, etc. Here unitary u is the so-called disentangler of
the MERA, while w becomes the isometry of the MERA
once the second input spin is fixed in the j↑i eigenstate of
Z. This MERA, which is derived using two copies of the
Daubechies D4 wavelet, can be shown to approximate the
ground state of the quantum critical Ising model, including
the critical data of the Ising CFT. We also present a general
prescription for obtaining higher order MERA and give
another specific example. These analytic constructions
provide an important new tool for making further progress
in MERA applications, and are likely just the first example
of important results from the wavelet-MERA connection.
Free fermions.—We consider the tight-binding

Hamiltonian on an infinite 1D lattice of spinless fermions
at half-filling,

Hff ¼ −
X
r

ðâ†rþ1âr þ â†r ârþ1Þ; ð2Þ

with â and â† the annihilation and creation operators. In
terms of the Fourier mode creation operators b̂†k, where k is
the momentum, the ground state of H is given by occupy-
ing the negative energy modes,
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jψGSi ¼
Y

jkj<π=2
b̂†kj0i; ð3Þ

while leaving positive energy modes unoccupied.
Wavelets.—We would like to use wavelets to find

another set of modes fĉLowz g, more localized than plane
waves, but composed almost entirely of linear combina-
tions of negative energy states, so that the ground state (GS)
is approximated by filling these modes,

jψGSi ≈
Y
z

ðĉLowz Þ†j0i: ð4Þ

Correspondingly, there will also exist a set of modes
fĉHighz g composed of linear combinations of positive
energy states, which are unoccupied in the ground state.
The accuracy of the separation into low and high energy
states must be increasingly sharp as one looks more closely
near the Fermi surface, which suggests we require a WT
that targets the Fermi points, �π=2. On the other hand,
standard WTs, such as Daubechies wavelets [17,18], are
designed to approximately divide the Fourier components
into low (scaling function) and high (wavelet) parts at each
scale; see Fig. 1(a), such that they resolve degrees of
freedom close to momentum k ¼ 0. Thus, a direct appli-
cation of known WTs is not sufficient to approximate the
ground state jψGSi. However, we will show that it is
possible to combine two slightly modified Daubechies
WTs to give an excellent separation of negative and
positive energies, targeting k ¼ �π=2.
Let us consider the Daubechies D4 wavelets (see

Ref. [23], Sec. A for an introduction). We denote by
qzðrÞ the wavelet function at scale z, and QzðkÞ its
(discrete) Fourier transform. At the smallest z ¼ 1 scale,
the D4 wavelet has support on 4 sites, where it has values
q1 ≈ ½−0.483; 0.837;−0.224;−0.129�, while wavelets at

larger scales qz, which are supported on intervals of r ¼
2zþ1 þ 2z − 2 sites, can be easily obtained from q1 using
the cascade algorithm [21]. At level z the basis includes all
translations of qz by d ¼ n2z sites (for integer n). The set of
all wavelets—every level z, with all appropriate trans-
lations, form a complete, orthonormal basis of functions.
The Daubechies wavelets are designed as high-pass filters,
such that they are orthogonal to smooth functions (or,
equivalently, functions that only possess low frequency
components). Specifically, the D4 wavelets have two
vanishing moments about k ¼ 0,

Qzð0Þ ¼ 0;
∂Qz

∂k
����
k¼0

¼ 0; ð5Þ

for all scales z; see also Fig. 1(a).
We now construct modified wavelets that have the

vanishing moments at the Fermi points, k� π=2, rather
than k ¼ 0. We first we multiply the wavelets by a phase
ωðrÞ ¼ expðiπrÞ and then dilate by a factor of 2, but with
the in-between sites set to zero:

~qoddz ðrÞ ¼
� ð−1Þðrþ1

2
Þqzðrþ1

2
Þ; r odd

0; r even:
ð6Þ

Similarly, we construct wavelets ~qevenz that only have
support on the even sublattice. This transformation into
odd and even sublattice parts seems more natural if one
considers the real linear combinations of the Fermi points
sinðrπ=2Þ and cosðrπ=2Þ, which are zero on even and odd
sublattices, respectively. The key result is that the fre-
quency space representation of these wavelets ~Qodd

z ðkÞ now
have vanishing moments at k ¼ �π=2,

~Qodd
z

�
� π

2

�
¼ 0;

∂ ~Qodd
z

∂k
����
�π

2

¼ 0; ð7Þ

and similarly for ~Qeven
z .

The modified wavelet functions are localized, in Fourier
space, increasingly close to the Fermi points at larger scale
z, however, they are still not sufficient to approximate the
ground state jψGSi as they contain a mixture of negative
and positive energy components. To separate the energy
components, we form coherent low lzðrÞ and high hzðrÞ
wavelet pairs by taking symmetric and antisymmetric
combinations, respectively, of ~qoddz and ~qevenz ,

lzðrÞ ¼ ~qoddz ðrÞ þ ~qevenz ðr0 − rÞ;
hzðrÞ ¼ ~qoddz ðrÞ − ~qevenz ðr0 − rÞ: ð8Þ

The constant r0, which determines the spatial alignment of
the odd and even wavelets, should be chosen in order to
form wavelets with the best separation of energies; here this
choice is such that the support of an even wavelet starts

FIG. 1. (a) Plots of D4 Daubechies wavelets qzðrÞ and scaling
functions szðrÞ for scales z ¼ 1, 2, together with their Fourier
spectraQzðkÞ and SzðkÞ. (b) The quantum circuit, built from gates
vðθÞ of Eq. (10) with angles θ1 ¼ π=12 and θ2 ¼ −π=6, imple-
ments the linear map of fermionic modes, see Eq. (12), corre-
sponding to the D4 wavelet transform.
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three sites before that of an odd wavelet it is paired with
(see Ref. [23], Sec. B for details).
The symmetric and antisymmetric wavelet pairs lzðrÞ

and hzðrÞ, together with their frequency spectra, are plotted
in Fig. 2(a) for scales z ¼ 1, 2. It can be seen that they
separate negative and positive energies nicely, with lzðrÞ, to
very good approximation, only containing frequencies
jkj < π=2 [and vice versa for hzðrÞ]. Thus, if we use the
wavelets lzðrÞ and hzðrÞ to define a linear mapping of
fermionic modes,

ĉLowz ¼
X
r

ârlzðrÞ;

ĉHighz ¼
X
r

ârhzðrÞ; ð9Þ

then the ground state jψGSi of the free fermion model Hff
can be approximated by occupying the negative energy
modes ĉLowz as per Eq. (4).
Quantum circuit.—Through Eqs. (6), (8), and (9) we

have identified a discrete wavelet transform of fermionic
modes that can be used to approximate the free fermion
ground state. We now describe how this transform of
fermionic modes can be realized as a quantum circuit,
employing a formalism similar to that of Refs. [24–26], and
argue that this circuit corresponds precisely to a MERA [4].

We restrict to a circuit built from two-site unitary gates v
that preserve particle number

vr;rþ1ðθÞ ¼

2
6664
1 0 0 0

0 cosðθÞ − sinðθÞ 0

0 sinðθÞ cosðθÞ 0

0 0 0 1

3
7775; ð10Þ

written in the number basis fj00i; j01i; j10i; j11ig for some
angle θ ∈ ½−π; π�. It is known that unitary gates vðθÞ map
fermionic modes linearly, such that, under action of vðθÞ, a
pair of fermionic modes âr and ârþ1 is mapped to a new set
of modes d̂r and d̂rþ1,

�
d̂r
d̂rþ1

�
≡

�
cosðθÞ sinðθÞ
− sinðθÞ cosðθÞ

��
âr
ârþ1

�
: ð11Þ

Any unitary linear map on M fermionic modes can be
decomposed as a product of such two-site maps, and,
hence, can also be expressed as a quantum circuit built from
the unitary gates vðθÞ of Eq. (10). It follows that an
orthogonal wavelet transform, which implements a unitary
map of fermionic modes [27],

ĉz ¼
X
r

ârqzðrÞ; ð12Þ

where qzðrÞ are the wavelet coefficients at scale z, can also
be expressed as a unitary circuit built from gates vðθÞ.
Figure 1(b) shows the circuit diagram for the D4 wavelets,
which is built from two distinct unitary gates:
fvðπ=12Þ; vð−π=6Þg. The structure of this circuit follows
from the fast wavelet transform algorithm [28], which
implements the WT on 2M sites through M recursive
applications of a filter bank, and thus allows the circuit
to be organized into M layers. The filter bank correspond-
ing to a WT of 2N coefficients can be further decomposed
into a depth N circuit of gates fvðθ1Þ; vðθ2Þ;…; vðθNÞg,
where the angles θi are fixed from the WT under consid-
eration; see Refs. [26,29] for additional details. Notice that
the circuit of Fig. 1(b) corresponding to the D4 wavelet is
precisely a scale-invariant MERA. In a higher order WT,
such as the D2N Daubechies wavelets with N > 2, the
circuit would have N levels of unitary gates vðθiÞ in each
layer and thus no longer correspond to a standard MERA;
however, under appropriate grouping of gates, see Ref. [23]
Sec. C, one could reinterpret this as a MERA of larger bond
dimension.
Two copies of the circuit representation of the D4

wavelets can then be combined to construct the modified
wavelet transform of Eqs. (8) and (9) that approximates the
free fermion ground state, as depicted in Fig. 2(b). Here one
copy of the circuit for the D4 WT is implemented on the
odd sublattice, and is overlaid with a second circuit

FIG. 2. (a) Plots of low frequency lzðrÞ and high frequency
hzðrÞ wavelets from Eq. (8), together with their Fourier spectra
LzðkÞ and HzðkÞ, for scales z ¼ 1, 2. (b) Quantum circuit that
approximates the free fermion ground state by setting modes
corresponding to low frequency lz wavelets in the occupied j1i
state and high frequency hz wavelets in the unoccupied j0i state.
The circuit is built from gates vðθÞ as defined in Eq. (10) with
angles θ as indicated, and v0 represents a phase gate with angle π.
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(spatially mirrored with respect to the first) on the even
sublattice. Note that the spatial mirroring is equivalent to
negating the sign of the unitary angles, such that the second
circuit is comprised of gates fvð−π=12Þ; vðπ=6Þg. These
two circuits are then coupled by vð−π=4Þ gates, which
generate the symmetric and antisymmetric wavelets
described in Eq. (8).
The combined circuit depicted in Fig. 2(b) consists of an

identical sequence of scale-invariant layers, labeled
fU1; U2;…g, but also includes an initial “transitional”
layer V at the bottom. The transitional layer serves two
purposes: (i) first it includes local unitary operators v0 ¼
â†â − ââ† that implement the phase change described in
Eq. (6), and, (ii) second, it includes an extra set of swap
gates required to give the proper wavelet alignment r0 in
Eq. (8). Under appropriate grouping of tensors, the circuit
of Fig. 2(b) can be mapped to a binary MERA of bond
dimension χ ¼ 4. This MERA can then be split into two
copies of the χ ¼ 2 MERA from Eq. (1) for the ground
state of the quantum critical Ising model, HIs: ¼P

r ð−XrXrþ1 − ZrÞ, using known decoupling [30] and
Jordan-Wigner [31] transformations, see Ref. [23], Sec. D
for details.
Results and discussion.—We now analyze the accuracy

of the χ ¼ 2 MERA from Eq. (1), constructed using D4
wavelets, and a χ ¼ 8 MERA, constructed using higher
order wavelets (see Ref. [23], Sec. C), as approximate
ground states of the quantum critical Ising model. Note
that, as with the χ ¼ 2 MERA, the parameters defining the
χ ¼ 8 MERA are exactly specified from a closed-form
solution. The ground energy and critical data [13,14]
(including central charge c, scaling dimensions Δi, and
operator product expansion (OPE) coefficients Cijk) are
computed using standard MERA techniques [6–8], and the
results displayed in Table I.
The wavelet-derived results reproduce the critical data of

the Ising CFT, with the χ ¼ 8 MERA providing signifi-
cantly better accuracy. However, we find it remarkable that
the χ ¼ 2 MERA of Eq. (1) does reasonably encode the
CFT, despite the simplicity of the tensors it is constructed
from. A novel feature of these MERA is that some of the
scaling dimensions are reproduced exactly (specifically
those corresponding to primary fields fI; ε;ψ ; ψ̄g, as well
as for several of their descendants), which has never been
achieved with variationally optimized MERA; see Ref. [23]
Sec. F for comparison.
As usual, each layer of the MERA can be understood as

implementing a step of entanglement renormalization (ER),
which can be used to generate a sequence of increasingly
coarse-grained Hamiltonians,

H½0�
Is: → H½1�

Is: → H½2�
Is: → H½3�

Is: → …; ð13Þ

where H½z�
Is: is the effective Hamiltonian after z steps. This

RG flow is found to converge to a gapless fixed point H�
Is:

that approximates the thermodynamic limit of the critical
Ising model; see Ref. [23], Sec. E for details. This is the
first known example (analytic or numeric) of a critical
Hamiltonian that is coarse grained to a truly gapless fixed
point using ER. In previous (variational) implementations
of ER, the gapless fixed point is approximated for a finite
number of RG steps (which can be increased by using
larger χ), before ultimately flowing to a gapped fixed point
[32]. This was understood to be an inescapable conse-
quence of finite bond dimension χ; that truncation errors
introduce relevant perturbations that shift the RG flow off
criticality. Here we have demonstrated that the (previously
observed) inability of ER to fully reproduce a critical RG
fixed point stems from a limitation of the optimization
strategies used, as opposed to an inherent limitation of the
finite-χ MERA.
That the RG flow from the wavelet-derived MERA

converges to a gapless fixed point follows from the
constraints of Eq. (7), which impose that the wavelets,
corresponding to modes truncated at each RG step, have
exactly vanishing component at the Fermi points, �π=2.
This ensures that the Fermi surface remains intact under
coarse graining, thus preventing a gap from opening. More
generally, this result may hint towards better strategies for
numerical optimization of MERA.
The wavelet methodology could be extended to allow

analytic construction of MERA (and potentially branching
MERA [33]) for free fermions in higher dimensions, and
could also be extended to free bosonic MERA [34] which
may connect with previous use of wavelets to study bosonic
field theories [35]. We expect that the wavelet-MERA

TABLE I. Energy density, central charge c, scaling dimensions
Δi of primary fields (and also of the Hamiltonian ΔH), OPE
coefficients Cijk, of the χ ¼ 2, 8 MERA constructed using
wavelets.

MERA MERA
Exact χ ¼ 2 χ ¼ 8

Energy −1.273 23… −1.242 12 −1.267 74
(2.4% err.) (0.4% err.)

c 0.5 0.4957 0.5041
ΔI 0 0 0
Δσ 0.125 0.1402 0.1233
Δϵ 1 1 1
Δμ 0.125 0.1445 0.1291
Δψ 0.5 0.5 0.5
Δψ̄ 0.5 0.5 0.5
ΔH 2 2 2
Cϵ;σ;σ 0.5 0.4584 0.4957
Cϵ;μ;μ −0.5 −0.4201 −0.5060
Cψ ;μ;σ e−iπ=4ffiffi

2
p 1.1422e−iπ=4ffiffi

2
p 1.0014e−iπ=4ffiffi

2
p

Cψ̄ ;μ;σ eiπ=4ffiffi
2

p 1.1422eiπ=4ffiffi
2

p 1.0014eiπ=4ffiffi
2

p

Cϵ;ψ ;ψ̄ i 1.234i 1.0243i
Cϵ;ψ̄ ;ψ −i −1.234i −1.0243i
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relation will lead to other useful results, potentially
allowing a better characterization of errors and improved
implementations of MERA, and to be useful in the ongoing
efforts to understand MERA in the context of AdS=CFT.
Going the other way, this relation could also lead to useful
advances in the design of wavelet transforms and in wavelet
applications [29].
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