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We directly observe the quantum interference between two well-separated trapped-ion mechanical
oscillator wave packets. The superposed state is created from a spin-motion entangled state using a
heralded measurement. Wave packet interference is observed through the energy eigenstate populations.
We reconstruct the Wigner function of these states by introducing probe Hamiltonians which measure Fock
state populations in displaced and squeezed bases. Squeezed-basis measurements with 8 dB squeezing
allow the measurement of interference for Δα ¼ 15.6, corresponding to a distance of 240 nm between the
two superposed wave packets.
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The rules of quantum mechanics give rise to the
prediction that systems can exist in a superposition of
two macroscopically distinct quantum states, connected by
a fixed relationship known as the quantum phase. This is
illustrated by the Schrödinger’s cat thought an experiment
in which a cat is envisioned as being simultaneously dead
and alive, a situation which has no counterpart in our
classically familiar world. The key distinction which
separates the quantum superposition from a classical
mixture is the phase relationship between the two distinct
parts of the superposition. An approximation to such a
situation is provided by superposed “classical” coherent
states of oscillators which are macroscopically distinct at
large amplitudes. Such “cat” states have been realized in the
oscillations of trapped atomic ions [1–6], and for the
electromagnetic field [7,8]. While the direct phase relation-
ship between the two states has been observed for the latter,
for massive particles (such as trapped ions and matter-wave
interferometers [9]) in which spatial superpositions have
been created, no in situ measurements have been per-
formed. Quantum coherence has instead been verified by
bringing the two separated wave packets together so that
they spatially overlap and observing the resulting revival of
coherence [1,6]. For large cat sizes, both the mean and the
uncertainty in energy of the superposed wave packets is
increased. As viewed from the energy eigenbasis, the states
occupy an increasingly large Hilbert space, and thus
become progressively harder to characterize. This provides
an additional challenge to experiments which seek to probe
cat states in the mesoscopic regime.
In this Letter, we use an in-sequence spin measurement

on a spin-motion entangled state to project out and herald a
superposition of two coherent mechanical oscillator states
of opposite phases. We perform measurements which
directly observe the interference of the two spatially
separated wave packets through the effect on the occupa-
tion of the energy eigenstates. For α > 5 the standard

analysis method, which is based on an energy eigenstate
decomposition, has a poor signal to noise ratio. We over-
come this limitation by performing an analogous eigenstate
decomposition in a squeezed Fock basis in which the mean
quantum number of the cat is reduced substantially. Using a
Fock basis with 8 dB of squeezing, we are able to observe
quantum interference for phase-space separations of
Δα ¼ 15.6, which correspond to a direct measurement
of interference between wave packets separated by 240 nm
with a root-mean-square extent of 7.8 nm. Adding an extra
term to the probe Hamiltonian, we displace the analysis
basis, providing a method for reconstructing the Wigner
function of the oscillator state. We demonstrate a full
reconstruction using the nonsqueezed basis for a cat with
α ¼ 2.1, and we take additional slices through the phase
space for cats with α ¼ 4.25 and 5.9, making use of a
squeezed analysis basis with 7 dB of squeezing for the
larger state.
The oscillator cat states are experimentally generated

using a single motional mode of a trapped 40Caþ ion, which
can be treated as a mechanical harmonic oscillator with a
frequency of ωm ≈ 2π × 2.08 MHz. We implement a two-
level pseudospin using the ion’s electronic transition
jL¼0;J¼1=2;MJ¼þ1=2i↔jL0 ¼2;J0 ¼5=2;M0

J¼3=2i,
which we label with j↓i and j↑i, respectively. We couple
the two levels using a narrow-linewidth laser with a
wavelength of 729 nm and a k vector at an angle of 45°
to the ion’s axis of motion, resulting in a Lamb-Dicke
parameter of η ≈ 0.05 (more details on the experimental
methods can be found in the Supplemental Material [10]).
Starting from an ion prepared in j↓i and the oscillator
ground state, we apply an internal-state dependent force
using a Hamiltonian ℏΩσ̂xðâ† þ âÞ=2, where σ̂x ¼
jþihþj − j−ih−j, with j�i≡ ðj↓i � j↑iÞ= ffiffiffi

2
p

, and Ω is a
constant. In our experiments this is well approximated by
simultaneously driving the red and blue motional sidebands
of the internal-state transition j↓i ↔ j↑i [1] (corrections
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due to higher order terms in the laser-ion interaction are
relatively small—see the Supplemental Material [10] for
more information). After applying this Hamiltonian for a
duration t, the state of the ion can ideally be written as a
spin-motion entangled state,

jψ enti ¼
1ffiffiffi
2

p ðjþijαi þ j−ij − αiÞ; ð1Þ

where α ¼ −iΩt=2 relates the amplitude of oscillation z to
the rms extent of the ground state wave function z0 via
z ¼ 2αz0. This is the standard cat state which has been
produced in earlier work with trapped ions [1–3,5], in
which the superposed motional wave packets are separated
in phase space by Δα ¼ 2α but are entangled with the ion’s
internal state. jψ enti can be written in the j↑i, j↓i basis as

jψ enti ¼
1ffiffiffi
2

p ðj↑ijψ−i þ j↓ijψþiÞ; ð2Þ

where jψ�i≡ ðjαi � j − αiÞ= ffiffiffi
2

p
. A measurement of the

internal state therefore projects the motional state into a
superposition of two out-of-phase oscillations, with the
quantum phase relating the two depending on the meas-
urement result. Detection of the internal state involves
applying a resonant laser which scatters many photons for
the j↓i state, but none for the j↑i state [12]. The former
results in photon recoil which destroys the motional state;
thus, we make an in-sequence decision to only proceed
with the analysis of the motional state when the internal
state is found to be j↑i. The state jψþi (jψ−i) contains only
even (odd) energy eigenfunctions due to the quantum
interference between the two coherent states j�αi. The
state populations pðjniÞ are extracted by observing the
spin projection as a function of the duration tp of a probe
Hamiltonian Ĥr ¼ ðℏΩr=2Þ½â†σ̂− þ H:c:�. Experimentally,
this Hamiltonian is realized by driving the red-sideband
transition j↑; ni ↔ j↓; nþ 1i. The probability of observ-
ing spin j↓i after the pulse follows

Pð↓; tpÞ ¼
1

2

X

n

pðjϕniÞ½1 − γðtÞ cosðΩn;nþ1tpÞ�; ð3Þ

where pðjϕniÞ is the probability that the motion started in
the Fock state jϕni prior to the probe pulse. When using the
red-sideband probe, these Fock states correspond to the
energy eigenstates jϕni ¼ jni and the Rabi frequencies
Ωn;nþ1 ¼ ΩrMn scale with n according to the motional
matrix elementsMn ¼ hnþ 1jeiηðâ†þâÞjni. For small values
of the dimensionless Lamb-Dicke parameter η, these scale
as

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
[13]. γðtÞ accounts for decay in the coherence of

the whole system during the probe pulse. In fitting data, we
use a phenomenological exponential decay γðtÞ ¼ e−Γt

(more details on the fits can be found in the
Supplemental Material [10]). Data obtained using this

method are shown for three states with jαj≃ 3 in Fig. 1,
alongside the motional populations obtained from fits of
Eq. (3) to the data. In the first, we do not perform a
postselected measurement but rather probe the motional
state populations after repumping to j↓i, resulting in the
density matrix ρ̂mix ¼ ðjαihαj þ j − αih−αjÞ=2, which has
a Poisson population distribution of energy eigenstates [this
leaves the ion in j↓i, and thus, in contrast to all other
measurements in this Letter, we probe using the
Hamiltonian Ĥb ¼ ðℏΩb=2Þ½â†σ̂þ þ H:c:�, implemented
by driving the blue sideband j↓; ni ↔ j↑; nþ 1i, resulting
in a spin probability P0ð↓; tpÞ ¼ 1 − Pð↓; tpÞ]. The photon
recoil from the repumping step leads to the emission of less
than three photons, on average, and reduces the fidelity of
the final state by around 2%. The time evolution of the spin
populations shows the well-known collapse and revival,
with the latter occurring when Rabi oscillations for neigh-
boring values of n come into phase [14]. This occurs
around tr;mix ≃ 4π=½Ωrð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihni þ 1
p

−
ffiffiffiffiffiffiffihnip Þ�, correspond-

ing to tr;mix ¼ 386 μs for the settings Ωr=ð2πÞ ¼ 31 kHz
and n̄ ¼ jαj2 ¼ 8.76 used in our experiment. The results for

FIG. 1. Experimental data from measurements of Pð↓; tpÞ
using Ĥr [Ĥb for (a)] (left panels), fitted using Eq. (3) to obtain
the motional energy eigenstate populations (right panels). The
data are taken by preparation of state jψ enti, followed by an
analysis which is performed after (a) repumping the spin to j↓i,
(b) detection of the ion in the state j↑i, producing the state jψ−i,
and (c) detection of the ion in the state j↑i after applying a spin
flip using the carrier transition, which produces jψþi. The vertical
dashed lines indicate the revival times tr and tr;mix. The
reconstructed population distributions show the effect of the
postselected measurement for the latter two cases. The blue
points in the population graphs correspond to the ideal cases for
α ¼ 3. Spin populations are the result of 250 repeats of the full
experimental sequence, which corresponds to roughly 125
analysis detections for the postselected cases. Error bars are
estimated from quantum projection noise. The population errors
are given as the standard error of the mean (SEM).
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the mixed state should be compared with cases in which the
states are analyzed conditionally to the results of a spin
measurement of the internal state. The first corresponds to
analyzing the motional state only when the spin is
measured to be j↑i, which ideally produces jψ−i. For
the second, we perform a coherent spin inversion prior to
the conditional measurement, which ideally projects the
motion into jψþi. For both jψþi and jψ−i, the revival at
tp ¼ tr;mix is accompanied by an additional revival in the
spin population oscillations at around 198 μs, which results
from a rephasing of the contributions from Fock states
differing in n by 2. This corresponds to the condition
tr ¼ 4π=½Ωrð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihni þ 2
p

−
ffiffiffiffiffiffiffihnip Þ�, which, for hni ≫ 2,

gives tr ≃ 4π
ffiffiffiffiffiffiffihnip

=Ωr ≃ tr;mix=2. We see in the popula-
tions extracted from the fit that the odd and even cat states
contain predominantly odd or even number states. We
use these populations to extract the parity hP̂i≡P

nð−1ÞnpðjniÞ of the number state distributions,
obtaining 0.029� 0.024 for the mixture, −0.88� 0.04
for jψ−i, and 0.83� 0.05 for jψþi.
In the methods used above, the visibility of the revival of

oscillations in the spin population at time tr is the key
element for diagnosing the parity of the cat. Since the mean
Rabi rate scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihni þ 1
p

, the revival time corresponds
to approximately hni Rabi oscillations on the motional
sideband. In order to observe a significant revival, this time
must be short compared to relevant decoherence times for
the cat state, and the stability of the Rabi oscillations must
be high enough that hni oscillations are visible for all
relevant Fock states. The coherence time of trapped-ion
oscillator cats due to motional heating and motional
dephasing scales roughly as 1=jΔαj2 [15], and we observe
that our spin-motion Rabi oscillations decay with a time
constant which is proportional to the Rabi frequency
(see the discussion in the Supplemental Material [10]).

The combination of these two effects means that we are
unable to observe an interference feature for a cat with
Δα≳ 10. To overcome this problem, we introduce an
analysis method based on a squeezed Fock state basis
jϕnsi ¼ jnsi≡ ŜðξÞjni, where the squeezing operator is

defined as ŜðξÞ≡ eðξ�â2−ξâ†2Þ=2, with ξ≡ reiϕs [16]. The
basic idea is illustrated in Fig. 2. We choose the squeezing
axis perpendicular to the axis separating the two wave
packets of the cat, which corresponds to selecting the
phase ϕs ¼ 2 argαþ π. The effect of the antisqueezing
results in a mean occupation in the squeezed basis of
hnsi ¼ jαj2e−2r þ sinh2ðrÞ, exponentially suppressing the
contribution from the displacement at the cost of an
additional contribution which can be kept small with an
appropriate choice of r. The minimum value of hnsi for a
given α is reached for rmin ¼ lnð4jαj2 þ 1Þ=4. Since the
squeezing operator preserves parity, the even (odd) cats
consist of only even (odd) number state populations in
both bases.
To measure our states in the squeezed basis, we substitute

the Hamiltonian Ĥs ≡ ðℏΩs=2Þ½ðâþ tanhðrÞeiϕs â†Þσ̂−þ
H:c:� for Ĥr, which is implemented in the experiment by
adding a second frequency to the probe laser pulse, with a
frequency 2ωm lower than the blue-sideband component
(making it resonant with the red sideband) and with
its amplitude reduced relative to the blue sideband by a
factor tanhðrÞ (for the calibration of the phases, see the
Supplemental Material [10]). The time evolution of the spin
populations follows Eq. (3), with the relevant number states
becoming those of the squeezed basis. In the Lamb-Dicke
regime the scaling of the Rabi frequencies is againffiffiffiffiffiffiffiffiffiffiffiffiffi
ns þ 1

p
, though in fitting the data we use values for the

matrix elements which include higher order terms. Data for
cat states with jαj ¼ 6.6, 7.15, and 7.8 are shown in Fig. 3.
The optimal choice of r for minimizing hnsi was not used
because we observe that, for a larger r, the Rabi oscillations
of the squeezed Hamiltonian dephase, which impedes the
signal. This is a consequence of the squeezed basis’
increased sensitivity to the dephasing of the motional state
compared to the standard analysis. In addition, we do not
gain the full speedup in the revival time because, in our
setup, Ωs < Ωr. Nevertheless, for our largest cat the
number of Rabi oscillations at which the revival occurs
is reduced from 60 to 11, which is essential for observing
the interference. By fitting Eq. (3) with floated number
state populations, we obtain the results shown in Fig. 3,
from which we extract parities of hP̂i ¼ −0.55� 0.03,
−0.48� 0.03, and −0.30� 0.03 for jαj ¼ 6.6, jαj ¼ 7.15,
and jαj ¼ 7.8, respectively. Also shown in Fig. 3 are the
populations obtained from a fit to the experimental Pð↓; tpÞ
using a model of the motional populations which is derived
from a weighted sum of the even and odd cats, ρ̂mix ¼
ξmixjψ−ihψ−j þ ð1 − ξmixÞjψþihψþj. The close match
between theory and experiment indicates that the primary

FIG. 2. Comparison between the energy eigenbasis and the
squeezed basis for α ¼ 4 and r ¼ 0.54. The Wigner function of
the cat state is overlayed by lines which indicate the maximal
quasiprobability of the three closest Fock states to the mean value
of the cat state in the relevant basis. This is approximately given
by β ¼ ðnþ 1=2Þ1=2½cosðθÞer þ i sinðθÞe−r� [17]. The use of the
squeezed basis reduces both the mean value and the variance,
simplifying the extraction of the motional populations from the
spin oscillation data.
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decoherence mechanism mixes the two cat states, which is
compatible with heating of the ion due to fluctuations in the
electric field at frequencies close to the ion’s oscillation
frequency [15,18].
The Wigner function is a phase-space quasiprobability

distribution which plays an important role in visualizing
and characterizing oscillator states [17]. It can be
related to the expectation value of the parity operator
for the populations of displaced number states with
displacement β as WðβÞ ¼ 2=πhP̂ðβÞi, with hP̂ðβÞi ¼P

nð−1Þnp(D̂ðβÞjni) and D̂ðβÞ≡ eβâ
†−β�â the displace-

ment operator [8,19]. This relationship has previously been
used to experimentally reconstruct motional states of a
trapped-ion oscillator using a method that involves dis-
placing the state by −β, followed by extraction of the
populations in the energy eigenstate basis [19]. Rather than
taking this approach, we obtain the populations of the
oscillator states directly in the displaced basis, by adding a
displacement term ĤdðβÞ ¼ ℏΩ=2ðβ�σ̂þ þ βσ̂−Þ to the
Hamiltonian used to probe the state [16]. We do this for
both Ĥr and Ĥs by adding a laser component resonant with
the carrier transition j↑i ↔ j↓i, with Ω chosen to equal Ωr
and Ωs for each case. Under the action of the modified
Hamiltonian, the spin population dynamics follow Eq. (3),

but with the relevant probabilities being those of the
displaced number states jϕni ¼ D̂ðβÞjni or the displaced
squeezed number states ŜðξÞD̂ðβÞjni [10,16].
The reconstructed Wigner function for an odd cat state

with α≃ 2.1 is shown in Fig. 4, based on number state
population extraction using Eq. (3) on a grid of 17 × 21
values of β. This shows the expected features, including
the two separated peaks corresponding to the coherent state
wave packets as well as the interference fringes close to
β ¼ 0. Results are also shown for cuts along the imaginary
axis of phase space for a cat with α≃ 4.25, extracted using
measurements in both the energy eigenstate basis and a
squeezed basis with r ¼ 0.5. We fit the functional form
fðxÞ ¼ 2=πAe−2x

2

cosð4αxÞ with x ¼ ImðβÞ [14], and we
extract α ¼ 4.21� 0.02 and A ¼ 0.90� 0.02 for the
unsqueezed basis and α¼4.25�0.02 and A¼1.00�0.03
for the squeezed basis. Also shown is similar data for a cat
with α≃ 5.9, which were taken using a displaced-squeezed
probe Hamiltonian with r ¼ 0.8. In this case the fitted
curve gives α ¼ 5.86� 0.02 and A ¼ 0.57� 0.01.
The ability to project the ion into a superposition of

different locations and to directly measure the interference
of these states allows probing of the cat coherence free
from entanglement with the microscopic spin, which is
advantageous for probing the limits of quantum coherence
in these systems. The use of a squeezed basis in tomo-
graphic reconstructions may provide advantages for
reconstructing a range of quantum states with large

FIG. 4. Reconstructed Wigner functions (a) for a cat with
α≃ 2.0, extracted using 289 settings of the displaced Fock state
basis, (b) on the imaginary axis in phase space for a cat with
α ¼ 4.2, using a displaced basis, (c) for α≃ 4.3 performed using
a displaced-squeezed basis with r ¼ 0.5, (d) for a cat with α≃ 6
performed using a displaced-squeezed basis with r ¼ 0.8. In
(b)–(d) the fits are a theoretical form which can be derived from
the Wigner function of a well-separated cat state (for further
details, see the Supplemental Material [10]). Errors bars are given
as the SEM. The ImðβÞ axis is extracted from periodic calibration
scans, and we observe drifts in the scaling at the 10% level over a
day. Thus there is some uncertainty in the values of ImðβÞ due to
drifts between calibrations.

FIG. 3. Experimental data for the spin evolution Pð↓; tpÞ
obtained by probing in the squeezed basis with Ĥs (left panels).
These are fitted by using Eq. (3) to obtain the squeezed Fock state
populations (right panels). The parameters for the cat size and the
squeezing amplitude are given, along with the parity value
obtained from the extracted populations. The blue points in
the Fock state population plots are the populations obtained from
a fit using a weighted mixture of jψþi and jψ−i. Experimental
data points are an average of 750 repeats of the full experimental
sequence for (a) and (b) [1000 for (c)], which corresponds to
roughly 375 (500) analysis detections for the postselected cases.
Error bars are estimated from quantum projection noise. Errors on
population and parity estimates are given as the SEM.
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phase-space amplitudes. In the work above, it allows the
reduction of a state with a mean occupancy of around 60
quanta to one which has a mean of 11. These methods
should be applicable in a range of systems in which similar
spin-oscillator couplings are available, including other
mechanical oscillators which might be used to probe
gravitational or nonlinear collapse theories in quantum
physics [20,21]. The measurement technique used to
create the states in the work here is suitable for performing
tests of macroscopic realism based on Leggett-Garg
inequalities [22].
Recently, we became aware of parallel work in which a

direct parity measurement is used to measure cat states
produced in a similar manner using a single motional mode
of a two-ion crystal [23].
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