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Motivated by the formal argument that a nonzero shear modulus is the result of averaging over a
constrained configuration space, we demonstrate that the shear modulus calculated over a range of
temperatures and averaging times can be expressed (relative to its infinite frequency value) as a single
function of the mean squared displacement. This result is shown to hold for both a glass-liquid and a
crystal-liquid system.
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Glasses are rigid and liquids are not. The difficulty with
any distinction of two phases based solely on rigidity is that
the property is not an equilibrium one. Over 45 years ago,
Lebowitz [1] and Ruelle [2] pointed out that, in the
thermodynamic limit, the free energy of a phase cannot
depend on the shape of the sample, so the equilibrium value
of the shear modulus must vanish for all phases—crystals
as well as glasses—in the limit of a large N. Rationalizing
the obvious point that rigid materials do in fact exist, a
number of researchers [3] have concluded that a nonzero
shear modulus is a property of a metastable state, and hence
rigidity is observable only for observation times shorter
than the lifetime of that state. Since the observation of a
nonzero shear modulus depends crucially on this lifetime, it
would seem that any theoretical treatment of the mechani-
cal properties of a material will depend on solving the
onerous problem of slow relaxation in a condensed phase.
Williams and Evans [4], acknowledging this difficulty,
suggested that the shear modulus be formally calculated as
an equilibrium average over a constrained space of con-
figurations. This perspective suggests the attractive pos-
sibility that the magnitude of the shear modulus might be
expressed as an explicit function of the magnitude of the
configurational constraint applied, a relation that includes
a threshold degree of constraint, below which rigidity
vanishes. In this Letter we establish just such a relationship
between the shear modulus and the configurational con-
straint, measured here by the mean squared displacement,
for both a glass-liquid and a crystal-liquid system.
The Squire-Holt-Hoover expression [5] for the (con-

strained) equilibrium shear modulus Geq of a solid is

Geq ¼ G∞ − βV½hσ2i − hσi2�; ð1Þ

where σ is the shear stress, β ¼ 1=kBT, V is the volume,
and G∞ is the infinite frequency (or Born) shear modulus
given by [6]
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where Fij ¼ −ð1=rijÞðdϕ=drijÞ and ϕðrÞ is a spherically
symmetric interparticle potential. Note that the shear
modulus Geq is reduced, relative to the high frequency
value, by an amount associated with variance of the shear
stress fluctuations. In the context of elastic theory, these
fluctuations correspond to nonaffine contributions to the
modulus [7]. What is measured in a typical experiment is
the stress relaxation function GðtÞ ¼ σðtÞ=γ, where γ is an
applied strain and σðtÞ is the resulting time dependent shear
stress. The relation between GðtÞ and Geq is given by the
following expression [8]:

GðtÞ ¼ Geq þ βV½hσð0ÞσðtÞi − hσi2�; ð3Þ

where the shear stress autocorrelation function hσð0ÞσðtÞi
equals hσ2i when t ¼ 0 and hσi2 in the limit t → ∞. It
follows from Eq. (3) that Geq represents a lower bound to
the observed modulus GðtÞ with limt→∞GðtÞ ¼ Geq. This
long time limit refers only to the explicit time dependence
arising from the shear stress autocorrelation function. It
does not include any implicit time dependence associated
with the observation time used to construct the averages in
Geq [see Eq. (1)]. So, the averages h� � �i in Eqs. (1)–(3) are
understood to be taken over some constrained configura-
tion space. In the absence of a constraint, hσi ¼ 0 and
G∞ ¼ βVhσ2i [9], so that Geq ¼ 0.
The model liquid used in this study is a 2D system of soft

disks with a pair interaction potential, ϕijðrÞ ¼ ϵðaij=rÞ12,
between species i and j. In the case of the binary equimolar
mixture, we use a11 ¼ 1.0, a22 ¼ 1.4, and a12 ¼ 1.2—with
all particles having unit mass—a model that has been
extensively studied [10] in the context of the glass
transition. The temperature is reported in units of ϵ=kB
and the time in units of τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma211=ϵ

p
. Molecular dynam-

ics simulations were carried out under constant NVT
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conditions using LAMMPS [11] with a Nose-Hoover thermo-
stats at reduced densities 0.7468 (binary mixture) and 1.398
(single component) with a potential cutoff distance of
6.3a11. The system consisted of a total of N ¼ 1024
particles in the case of the binary mixture and N ¼ 1400
for the single component system. Previously [12], we
established that these values of N were sufficient for an
accurate calculation of the stress fluctuations. At low
temperatures, the trajectories are nonergodic for all acces-
sible values of the averaging time t. In order to fairly
sample the configuration space at these low temperatures,
we have averaged trajectories over statistically distinct
initial configurations. For the binary mixtures, 51 uncorre-
lated configurations were generated by cooling a liquid,
equilibrated at T ¼ 0.60 to T ¼ 0.30 at a cooling rate of
5 × 10−5, then minimizing the potential energy of the
resulting T ¼ 0.30 liquid by conjugate gradient minimiza-
tion. The minima, referred to as inherent structures (ISs),
were statistically independent as established by the average
shear stress (at T ¼ 0) of the inherent structures equaling
zero. To calculate Geq and G∞ at a given temperature T, we
randomly assigned momenta from the Boltzmann distri-
bution consistent with a temperature T to the particles in
each of the n IS configurations and then determined the
moduli for each individual IS using Eqs. (1) and (2),
respectively, by averaging over a trajectory run for a time
interval t. To obtain our final values of Geq and G∞, we
averaged the moduli for the individual IS configurations
over all 51 IS configurations. In the case of the single
component system, this protocol was modified as follows.
For the crystal phase we only used a single inherent
structure, that of the perfect crystal. For the liquid phase
data we simply carried out averages over molecular
dynamics trajectories of the equilibrated liquid.
In Fig. 1 we plot the values of Geq and G∞ as a function

of T for a binary mixture of soft disks in 2D at a fixed
density. We find that G∞ increases linearly with T and
shows no significant variation with the averaging time t.

[Note that the infinite frequency modulus referred to
experimentally is not G∞ but the value of GðtÞ in the
plateau region.] The equilibrium modulus Geq, in contrast,
exhibits a strongly nonlinear decrease with increasing
temperature, finally vanishing at a sufficiently high temper-
ature. The family of curves presented in Fig. 1 is evidence
of the significance of the time t used to calculate the
statistics of the stress fluctuations.
A number of papers [13–15] have discussed the loss of

rigidity of a glass as characterized by the disappearance of
Geq on heating in the context of a possible thermodynamic
instability, analogous to the softening in a superheated
crystal [13,14], or as an unjamming transition associated
with the thermal expansion of the amorphous solid [15].
(We remind the reader that our calculations have been
carried out at a fixed density, so the latter proposal is not
directly relevant here.) While the role of the observation
time is discussed in Ref. [14], it is the temperature that is
treated as the essential control parameter for the transition.
Following from our opening discussion, we shall explore
the idea that this decrease of the equilibrium shear
modulus, through increasing either T or the observation
time, is most fundamentally expressed as a result of the
changing degree of the configurational constraint associated
with the averaging.
To begin we note that the temperature dependence ofG∞

is not associated with the configurational constraint since,
by construction, the infinite frequency modulus depends
only on the sampling of the local curvature of the potential
energy surface. The increase in G∞ with temperature at
constant volume demonstrated in Fig. 1(b) is directly
associated with the increase of the virial pressure with T
under the constant volume constraint [see the inset of
Fig. 1(b)]. To eliminate this additional temperature depend-
ence we shall therefore consider the reduced modulus
Geq=G∞. Next, we need a measure of the configurational
constraint. The simplest such measure is the particle mean
squared displacement
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FIG. 1. Plot of (a) Geq and (b) G∞ vs T for the binary mixture over different averaging times. Note the significant effect of the
averaging time in the case of Geq, in contrast to G∞, where the influence of averaging time has saturated within a short time of ∼40τ.
[Inset of (b)] The virial pressure Pv ¼ −ð1=4VÞhPi

P
j≠i rijðdϕ=drijÞi as a function of T.
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hΔr2ðtÞi ¼ 1

N

X

i

hj~rið0Þ − ~riðtÞj2i; ð4Þ

where the time t here is the same as the observation time
used to calculate the stress averages and, in the case of a
binary mixture, the average is over both species.
In Fig. 2 we plot Geq=G∞ vs hΔr2i, where we have used

the data from Fig. 1 for a range of temperatures and
observation times. We find that all of the data from Fig. 1
collapses onto a single curve. This result provides strong
support for the twin propositions of this Letter, i.e., that the
(reduced) shear modulus is simply a consequence of the
configurational constraint and that the mean squared
displacement provides a useful measure of this constraint.
A glass forming liquid is convenient for our purposes

because it can access the entire range of Geq without
encountering a thermodynamic singularity. Our argument
relating shear modulus and configurational constraint,
however, should apply equally to crystallizing liquids.
To demonstrate this point, we consider a single component
soft disk liquid in 2D which crystallizes readily into a
triangular lattice. In Fig. 3 we plot the values of Geq and
hΔr2i for the system as a function of T, using an
observation time t ¼ 199τ. The presence of the first order
freezing at T ¼ 5.0 is clearly evident in both quantities. In
Fig. 4 we plotGeq=G∞ vs hΔr2i for a range of temperatures
(using crystal and liquid configurations for T below and
above the two phase region in Fig. 3, respectively) and a
range of observation times. Again, we find the data
collapsed onto a common curve, this in spite of the
discontinuity of the modulus and hΔr2i with respect to
temperature. It is worth noting the striking difference in the
low T limit of Geq=G∞ for the crystal (Fig. 4) and the glass
(Fig. 2). The reason for the considerable softening of the
glass relative to G∞, even at T ¼ 0, is due to (i) the higher
density of the crystal and (ii) the large nonaffine motions

[7] in the glass relative to those in the crystal. The presence
of nonaffine motions in the amorphous phase and their
effective absence in the crystal is due to the absence of
inversion symmetry in the local structure of the amorphous
phase and its presence in the crystal [16].
The dependence of the reduced shear modulus Geq=G∞

on hΔr2i is found, empirically, to be well described by the
following relation:
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FIG. 2. Plot ofGeq=G∞ vs hΔr2i for the binary mixture. In each
case, the mean squared displacement is calculated over the same
time interval as that used to evaluate Geq.
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FIG. 3. The temperature dependence of Geq and hΔr2i (both
averaged over a time 199τ) for the single component 2D soft disk
system. Because of the constant density constraint, there is a
range of temperatures corresponding to a two phase coexistence,
indicated by the two vertical dashed lines. The freezing transition
is marked by a steplike change in the modulus and the mean
squared displacement.
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FIG. 4. The dependence of Geq=G∞ on hΔr2i for the single
component crystal and liquid. As for Fig. 2, each point corre-
sponds to a choice of T and the averaging time. Liquid state data,
i.e., T > 5.0, are represented by filled symbols and crystal data by
open symbols. The curve corresponds to a fit of Eq. (5) to the
single component data with α ¼ 2.9 and q ¼ 0.0061.
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The success of this functional fit is shown in Fig. 5 for
the glass forming mixture with the fitted values α ¼ 2 and
q ¼ 0.08. Equation (5) also provides an excellent fit to
Geq=G∞ vs hΔr2i for both the crystal and liquid phases of
the single component system (see Fig. 4), but with different
parameters, α ¼ 2.9 and q ¼ 0.0061. Viewed as an emer-
gent property of restricted particle fluctuations, the deri-
vation of the dependence of Geq=G∞ on the degree of
configurational constraint must represent a problem of
fundamental importance.
We have argued here that the value of Geq (relative to

G∞) is a consequence of constraint. This is the opposite of
the account provided within harmonic models of solids in
which the elastic constants (or the bond force constants) are
prescribed in the model and the mean squared displacement
is determined as a consequence. The latter treatment,
however, is only possible because of the implicit configu-
rational constraints (i.e., assumed elasticity, unbreakable
harmonic bonds, etc.) on which such models rely. For the
harmonic solid, GeqhΔr2i=T ¼ constant (at a fixed den-
sity). As shown in the Fig. 5 inset, this relation holds only
for hΔr2i < 0.1, a result that underscores the inclusion of
anharmonic effects in the empirical relations demonstrated
in Figs. 4 and 5. Yoshino and Zamponi [17] have recently
derived a power law relationship between the shear
modulus and the mean squared displacement in a granular
model that applies within a metabasin, a restricted range
of configuration space corresponding, roughly, to 0.01 ≤
hΔr2i ≥ 0.2.

In conclusion, we have verified that our two
propositions—(1) the degree of configurational constraint
determines the magnitude of the shear modulus (relative to
the infinite frequency modulus), and (2) the mean squared
displacement provides a useful measure of this constraint—
do indeed represent a consistent physical picture for both a
glass forming liquid and one that undergoes freezing. This
result represents a fundamental unification of the physical
basis of rigidity. The presence of a nonzero shear modulus
is not, we argue, the consequence of a low temperature, a
high frequency measurement or even the presence of long-
range order. Rather, each of these factors is important only
in as far as it contributes to an implicit constraint on the
volume of the configuration space that can be explored by
stress fluctuations. It is this constraint, however it is achieved,
that determines the value of the equilibrium shear modulus.
This is a powerful result with a number of interesting
consequences. First, accounts of the temperature dependence
of the shear modulus of metallic glasses [18] have relied on
the language of anharmonic effects borrowed from crystal
physics. In the picture we present here, the decrease in the
glass modulus on heating is associated with the increase in
hΔr2i by harmonic or anharmonic motions (along with any
decrease in G∞ associated with thermal expansion when a
constant pressure is employed, as in Ref. [14]). Second, we
have argued that the shear modulus should be regarded as a
mechanical manifestation of restricted motion. Couple this
idea with a description of the role that elastic behavior
plays in determining the rate of particle motion (e.g., the
shoving model of Dyre [19]) and there is the possibility of a
self-consistent theory in which the modulus is, itself, a
consequence of the very particle mobilities that it acts to
constrain. Third, these results suggest a reassessment of the
empirical Lindemann criterion [20], i.e., the observation that
crystal order is lost once the mean squared displacement
exceeds some threshold value.Our results here suggest that it
is rigidity, not structure, per se, that vanishes as the mean
square displacement increases. Finally, since our account of
rigidity places no special condition on how the configuration
space is accessed, it is possible that nonthermal contributions
to particle mobility such as the nonaffine motion due to
applied strain should result in an analogous reduction in
Geq=G∞ [21].
In this Letter we have established that a collection of

factors—time, temperature, and order—associated with the
observation of rigidity in a dense phase can be replaced by a
single tangible length that characterizes the degree of
configurational constraint. While we have established that
hΔr2i provides a workable measure of this constraint
length, further work is required to establish whether there
is a better measure of this constraint and whether we can
derive from first principles the mathematical relationship
between this measure and the shear modulus.
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Council.
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FIG. 5. A log-log plot of Geq=G∞ vs hΔr2i for the binary
mixture. (The correspondence between symbols and temper-
atures is the same as in Fig. 2.) The expression in Eq. (5) (solid
curve) provides a good description over the entire range of hΔr2i,
with α ¼ 2.0 and q ¼ 0.08. (Inset) The quantity GeqhΔr2i=T vs
hΔr2i. The harmonic approximation, indicated by a constant
value (dashed line), breaks down for hΔr2i ≥ 0.1.
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