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We compute the zero-temperature dynamical structure factor of one-dimensional liquid “He by means of
state-of-the-art quantum Monte Carlo and analytic continuation techniques. By increasing the density, the
dynamical structure factor reveals a transition from a highly compressible critical liquid to a quasisolid
regime. In the low-energy limit, the dynamical structure factor can be described by the quantum
hydrodynamic Luttinger-liquid theory, with a Luttinger parameter spanning all possible values by
increasing the density. At higher energies, our approach provides quantitative results beyond the
Luttinger-liquid theory. In particular, as the density increases, the interplay between dimensionality
and interaction makes the dynamical structure factor manifest a pseudo-particle-hole continuum typical
of fermionic systems. At the low-energy boundary of such a region and moderate densities, we find
consistency, within statistical uncertainties, with predictions of a power-law structure by the recently
developed nonlinear Luttinger-liquid theory. In the quasisolid regime, we observe a novel behavior at
intermediate momenta, which can be described by new analytical relations that we derive for the hard-rods
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One-dimensional (1D) quantum systems exhibit some of
the most diverse and fascinating phenomena of condensed
matter physics [1-3]. Among the most spectacular signa-
tures of the interplay between quantum fluctuations,
interaction and reduced dimensionality, are the breakdown
of ordered phases in the presence of short-range inter-
actions [4] and the loosened distinction between Bose
and Fermi behavior [5]. The study of quasi-1D quantum
systems is a very active research field, aroused by the
experimental investigation of electronic transport proper-
ties [6-10], by the fabrication of long 1D arrays of
Josephson junctions [11], and recently corroborated by
the availability of ultracold atomic gases in highly aniso-
tropic traps and optical lattices [2,12—-14], as well as by
experiments on confined He atoms [15-19].

The low-energy properties of a wide class of Bose and
Fermi 1D quantum systems [1,20] are notoriously captured
by the phenomenological Tomonaga-Luttinger-liquid
(TLL) theory [21-23], characterized by collective phonon-
like excitations. This theory introduces two conjugate
Bose fields ¢(x) and 6(x) describing, respectively, the
density and phase fluctuations of the field operator
w(x) = \/p+87(x) ¢?%) where p is the average density.
Those fields are described by the exactly solvable low-
energy effective Hamiltonian:

H,, :% / dx<c1<Laxe(x)2+KiLax¢(x)2>. (1)
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Although, in general, the TLL parameter K; and the sound
velocity ¢ are independent quantities (notably in lattice
models), for Galilean-invariant systems ¢ = vp/K; [23],
vp = hkr/m being the Fermi velocity and kr = zp the
Fermi wave vector of a 1D ideal Fermi gas (IFG), and K is
thus related to the compressibility kg by mK? = h*z*pks.
Such collective excitations are revealed by the low-
momentum and low-energy behavior of the dynamical
structure factor:

eiml ) )
S(q, ) _/dtm<e”H/hpq€_”H/hp—q>’ (2)

where p, = >N e/ is the Fourier transform of the
density operator, N the number of particles, H the
Hamiltonian, and x; the position of the ith particle [24].
A complete characterization of density fluctuations requires
one to compute (2) also beyond the limits of applicability of
the TLL theory. A deep insight in the characterization of (2)
at higher frequencies is provided by the phenomenological
nonlinear TLL theory [3,25]; for integrable models,
quantitative results are also provided by nonperturbative
numeric calculations [13,14,26-28]. For physically rel-
evant nonintegrable systems, on the other hand, the study
of (2) requires more general approaches.

In this Letter, we probe the excitations of 1D liquid “He
by evaluating its complete zero-temperature dynamical
structure factor with fully ab initio methods. When strictly
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confined in 1D, “He provides a spectacular condensed-
matter realization of a TLL, having the unique feature of
spanning all possible values of K; by only varying the
density. The interest in this system emerges also in
connection with experimental realizations and theoretical
characterizations of quasi-1D He systems confined inside
nanopores [17,29-31] or moving inside dislocation lines in
crystalline He samples [18,19,32]. A realistic microscopic
description of the system is provided by the Hamiltonian

2 N 9? N
H= w2 aat > Vix—x)), (3)

i<j=1

V(x) being the well-established Aziz potential [33]. We
access S(¢, w) by performing an inverse Laplace transform
of the imaginary-time correlation function:

1

F(q.7) =ﬁ<e’H/”pq6‘f”/”p_q> = /O dwe™™S(q, ).

4)

We compute F(q,7) using the path integral ground state
(PIGS) method [34,35], which provides unbiased [36]
estimates of ground-state properties and imaginary-time
correlations by statistically sampling the wave function
U, = e HW,, where U, is a trial state [37,38], non-
orthogonal to the ground state of H. At sufficiently large
7, the expectation values over W, are compatible with
ground-state averages. We simulate up to N = 160 particles
using periodic boundary conditions and find that our results
are representative of the thermodynamic limit already
for N =40 particles within statistical uncertainty (see
Supplemental Material [39]). Inverting the Laplace trans-
form in Eq. (4) is notoriously an ill-posed inverse problem,
meaning that many possible S(g,®) are compatible with
the imaginary-time data. However, a number of inversion
strategies have provided reliable results for physically
relevant systems [40-43]. In this Letter, we use the
state-of-the-art genetic inversion via falsification of theories
(GIFT) algorithm [43-50].

We study the Galilean-invariant liquid phase which is
notoriously stable above the density pg, = 0.026(2) A~
where it undergoes a spinodal decomposition [51-53],
namely, the formation of liquid droplets. In Fig. 1, we
compute the TLL parameter K; of the system as a function
of p > pg, from both the compressibility and the sound
velocity, inferred from the low-momentum behavior of the
static structure factor S(q) = F(q,0) = K;(q/2ky). The
good agreement between the two estimates over the whole
density range confirms their accuracy and the internal
consistency of our approach. Close to the spinodal decom-
position, the sound velocity provides a more precise
estimate of K; [54]. As the density increases, K; mono-
tonically decreases from oo to 0, manifesting three funda-
mental regimes. At density p < 0.06 A7l the system is in
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FIG. 1. TLL parameter K;, from the compressibility x5! =
p0,[p*8,E(p)] (blue circles) and the low-g behavior of S(q)
(orange triangles). Superimposed lines are described in the text.
Inset: Equation of state E(p).

the spinodal critical regime, and we observe K; «
(p — psp)~¢ with £ =0.5. This is equivalent to a depend-
ence ¢ « (P — Pg,)" of sound velocity with the pressure
difference P — Pg,, with Pg, the pressure at the spinodal
point and v = {/(2{ + 1) = 0.25, which is interestingly
consistent with the critical value in three-dimensional
helium [55-58]. At density p = 0.30 A*I, we observe
instead a good agreement with the hard-rods (HR) model
[59], defined by V(x) = oo for |x| < a and O otherwise. In
Fig. 1, we take a = 2.139 A, which is the scattering length
of the repulsive part of the “He potential as in Ref. [60].
The HR model spans all values of K; = (1 —pa)?> <1
as a function of the density. At the intermediate density
p=0.150 A~!, *He attains K, = 1, which is the TLL
parameter of the Tonks-Girardeau gas of impenetrable
pointlike bosons [5] and of the 1D IFG.

The diverse behavior of “He is a peculiar consequence of
the interplay between the hard-core repulsion, the van der
Waals attraction in the interaction potential, and the mass of
the atoms. It has been recently recognized that the TLL
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FIG. 2. Static structure factor S(g) at p = 0.22 and 0.30 A~!
(red circles and green triangles, respectively). Inset: Scaling of
S(2kp) with N at the same densities (dashed lines, fit to a power
law). Values of K; from ¢ and the scaling of S(2kj) are reported.
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Color plot of S(q, w) at several densities and corresponding K; . Feynman approximation @ (q) (gray dash-dotted lines) and

the free-particle dispersion 72g>/2m (green dotted lines) are drawn for comparison. Panels (a)—(d) show also the bounds w®(g) of the
particle-hole band (blue dashed line), while panels (e) and (f) show the bounds wi(g) of the HR elementary excitations (violet solid
line). Panel (f) shows the low-energy threshold wg,(¢) of HR with K; = 0.125 (double-dashed line) and momentum Q, (red arrow).

Values of S(g,®) beyond the scale are plotted in black.

parameter of *He features a similar high-density behavior
[61]; the low-density behavior, however, is remarkably
different, as the smaller mass of *He prevents a spinodal
decomposition, maintaining K; and the compressibility
below a finite value.

In view of the universality of the TLL theory, knowledge
of K; sheds light on the low-momentum and low-energy
structure of S(g, ). The TLL theory also predicts [62-64]
a power-law singularity S(q = 2kpj, ®) ~ @*"Kc=1) for
@ — 0 and integer (j € N) multiples of 2kp. Such a
singularity is strictly related to the emergence of quasi-
Bragg peaks in the static structure factor, featuring a
sublinear growth S(2kpj) o« N'=2°K1 [59] with the number
of particles. The height of the jth peak diverges, in the
thermodynamic limit, provided that 2j2K; < 1. In Fig. 2,
we observe the emergence of quasi-Bragg peaks in S(2ky)
at densities p > 0.196(5) A~!, where K, < 1/2. This is
naturally expected, since the small compressibility sets up a
diagonal quasi-long-range order, while crystallization is
prohibited by the dimensionality and by the range of the
interaction [59]. The scaling of S(2k;) with N, reported in
the inset in Fig. 2, provides an alternative estimate of K,
in agreement with the results in Fig. 1.

The rich physical behavior suggested by the TLL
parameter is notably unveiled by the dynamical structure
factor, that our approach characterizes over the entire
momentum-energy plane. Figure 3 shows S(g,w) as a
function of momentum and frequency, in Fermi units
2kp and Ep/h = hk%/2m, respectively, at several

representative densities. We show also Feynman’s approxi-
mation for the excitation spectrum wy(q) = hq*/2mS(q),
which postulates a single mode saturating the f-sum rule
hq*/2m = [ dwS(q, w)w. Departures from the Feynman
spectrum indicate a broadening or the presence of multiple
modes [65].

As expected, for small g and w, S(g, w) is always peaked
around the phonon dispersion relation @ = cg. On the other
hand, the high-energy scenario is strikingly different and
strongly dependent on the density. At K; = 6.3 [Fig. 3(a)],
the spectral weight is very close to the free-particle
dispersion, consistent with similar predictions for 3D helium
at negative pressures [55-58]. Such behavior is common to
the Lieb-Liniger contact interaction model at large K,
[26,66,67], although in the case of *He the physical origin
of such behavior lies in the spinodal critical point. At large
momentum (¢ 2 kr)and energy, we observe a broadening of
S(q,w) that becomes more and more pronounced as K
decreases [Figs. 3(b) and 3(c)]. As in the Lieb-Liniger model
[26], the spectral weight of S(g, @) partially fills the particle-
hole band of the 1D IFG, enclosed between the dispersion
relations w®(q) = |vpq £ hg*/2m|. In both cases, this
reveals a tendency for fermionization [S]: The repulsive
interaction between 1D bosons mimics the Pauli exclusion
principle and makes S(g,®) manifest the particle-hole
continuum typical of spinless free fermions. At K; = 2.1
[Fig. 3(c)], the spectral weight of “He starts to concentrate
again, emerging as a phonon and then bending downwards
to approach @~ (g). Such peculiar behavior is reminiscent
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of the deflection of the Bogoliubov mode in 3D systems of
hard spheres [50,68], with the notable difference that in 1D
the spectral weight at ¢ = 2kgj is nonzero up to very low
frequency. At K; = 1[Fig. 3(d)], the incipient concentration
of the spectral weight becomes strikingly manifest and takes
place around alow-energy excitation, whichis close tow™(g)
for g < 2kr and approaches the free-particle dispersion
relation for higher momentum. However, S(2k, @) is almost
flat at low frequency w < E/h, within our resolution (see
Supplemental Material [39]), analogously to the Tonks-
Girardeau and IFG models. Above the low-energy excitation,
alower-intensity secondary structure overhangs; for K; < 1
[Figs. 3(e) and 3(f)], it evolves into a well-defined high-
energy structure attaining a nonzero local minimum at
q = 2kp, in correspondence of the free-particle energy.
Although a precise characterization of this structure requires
further investigation, it is reminiscent of a 3D rotonic
behavior or of multiphonons [50,68-70]. For K; = 0.39
[Fig. 3(e)], S(¢,®) is mostly distributed in a region with
boundaries w7 (¢), which are modified with respect to o™ (q)
as an effect of interaction, and the spectral weight concen-
trates close to the lower branch w;(g). We notice that
wE(q) = o*(q)/K, [solid lines in Figs. 3(e) and 3(f)]. A
similar behavior can be discerned [71] in the super-Tonks-
Girardeau gas[72,73], agaseous excited state of the attractive
Lieb-Liniger model. This behavior can be quantitatively
explained: In the high-density regime, the main interaction
effect is volume exclusion, as in the HR model. The solution
of such amodel viathe Bethe ansatz technique [74-76] shows
that the eigenfunctions of the HR Hamiltonian can be mapped
onto those of an IFG with increased density p/(1 — pa), thus
yielding a scaling factor (1 — pa)~2 = K7 ! in the boundaries
of the particle-hole band.

The distribution of spectral weight changes dramatically
for K; = 0.125 [Fig. 3(f)] for 2kr < g < 4kp, where the
low-energy excitation rapidly broadens and flattens at g =
3.2kr and concentrates again at a lower energy around
q = 4kr. A quantitative explanation of this effect can be
given in the light of the recently developed nonlinear TLL
theory [3], again modeling “He atoms with HR. The
nonlinear TLL theory assumes the existence of a low-
energy threshold wy,(q), below which no excitations are
present. Interpreting an excitation with frequency o 2
g (q) as the creation of a mobile impurity in an otherwise
usual TLL, the nonlinear TLL theory shows that S(q, ®)
features a power-law singularity:

S(g. ) x O(w — wy(q))|w — wy(g)| 9. (5)

where A(q) is a function of K; and wy,(q) [25] and O(w) is
the Heaviside step function. The expansion wy,(q) ~ cq —
hg?/2m* of the low-energy threshold around ¢ = 0 defines
the effective mass m*, which sets the energy scale where
modifications from the TLL theory take place [25]. The
effective mass is a function 1/m* = cd,(c\/K,)/K, of K,
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FIG. 4. Analytical nonlinear TLL exponent Eq. (6) for HR with
K; =0.125 (solid line) and PIGS + GIFT (circles) fitted ex-
ponents of “He at density p = 0.3 A"

and the chemical potential x [25,77]. For the HR model we
indeed derive m/m* = 1/K;, indicating that wy(q) ~
w7 (q) for small momentum. This is again confirmed over
the whole range 0 < g < 2k by the analytical solution of
the HR model [76]. Away from this basic region, the low-
energy threshold repeats periodically [3,63,78] as shown in
Fig. 3(f); therefore, wy,(q) = s (q — 2nky) with 2nkp <
q < 2(n+ 1)kg and n integer.

For the HR model, given the analytic expressions of K
and wy,(g), we extract the exponents following Ref. [25]:

Mq)=-2(g—-n)(g-n—-1).  g=qa/2n. (6)
In Fig. 4, we show A(q) for a HR system with the same K
as in Fig. 3(f), comparing it to numerically extracted
exponents as described below. A(g) is a piecewise con-
tinuous function of g, with jump singularities at ¢ = 2nkg.
For 0 < g < 2kg, A(qg) > 0 and S(g,®) diverges close to
wy(q). After g = 2k, A(g) changes sign, and thus S(g, ®)
vanishes close to @y,(q). In fact, for 2k; < g < 3.2k, the
spectral weight concentrates much above wy,(g), around
w3 (q), a feature which is even beyond the nonlinear TLL
theory. Equation (6) predicts a flat S(g, w) at the special
wave vectors Q, = 2zn/a, consistent with a previous
result [59] based on exact properties of the HR model.
We indeed observe almost flat S(g, ®) at Q; = 3.24k =
27/a [red arrow in Fig. 3(f)]. Beyond Q,, the divergence
reappears, since A(gq) < 0.

To quantitatively verify prediction (6), for some
momenta we have performed much more refined recon-
structions at p = 0.3 A~!, imposing S(g.@) =0 [79]
below the exact wy,(¢) for the HR model and fitting the
obtained spectrum to a power law (see Supplemental
Material [39]). The obtained exponents are indicated in
Fig. 4: This procedure does not disprove the power-law
model (5) in a range of frequencies up to ~wy,(q) + Er/h,
depending on momentum [80] and yields exponents A(q)
which are consistent with the nonlinear TLL prediction
(6) within statistical uncertainty. This result is quite
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remarkable, since no prior knowledge about S(g,®) has
been enforced in the analytic continuations, except for the
f-sum rule and the exact threshold for HR [81].

We have thus provided a robust description of the system
in the experimentally relevant high-density regime, based
on the HR model, which almost fully characterizes the
spectrum at low and intermediate energies. The novel
structure predicted around momenta that are multiples of
27/a is relevant, and would be very interesting to exper-
imentally observe, for all quantum excluded-volume
systems, such as liquid He inside nanopores, Rydberg
gases [82,83], and super-Tonks-Girardeau gases.
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