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A great variety of nonlinear dissipative systems are known to host structures having a correlation range
much shorter than the size of the system. The dynamics of these localized structures (LSs) has been
investigated so far in situations featuring parity symmetry. In this Letter we extend this analysis to systems
lacking this property. We show that the LS drifting speed in a parameter varying landscape is not simply
proportional to the parameter gradient, as found in parity preserving situations. The symmetry breaking
implies a new contribution to the velocity field which is a function of the parameter value, thus leading to a
new paradigm for LSs manipulation. We illustrate this general concept by studying the trajectories of the
LSs found in a passively mode-locked laser operated in the localization regime. Moreover, the lack of parity
affects significantly LSs interactions which are governed by asymmetrical repulsive forces.
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Symmetry breaking (SB) is undoubtedly one of the most
important phenomena occurring in nature [1–3]. One dis-
tinguishes the situations of spontaneous SB, where the
governing laws are symmetrical but some of the solutions
are not, from the cases of explicit SB where the symmetry of
the underlying theory is broken. In optics, spontaneous SB
has been identified in pattern formation [4], coupled nano-
cavities [5], ring lasers [6], and two-dimensional [7] or
vectorial [8] solitons. Explicit SB is known to induce
convective instabilities [9–13] and drifts [14–16] and was
recently studied in PT symmetric waveguides [17–19].
We address here dissipative extended systems hosting

localized structures (LSs), which are solutions character-
ized by a correlation length much smaller than the size of
the system making them individually addressable [20–22].
These states are ubiquitous [23–29] but they are particu-
larly relevant for applications when implemented in optical
resonators and used as light bits for information processing
[29–32]. Localized structures were observed in the trans-
verse [33] and longitudinal [34,35] dimensions of optical
resonators driven by an external field, in lasing cavities
[36,37] and in optical parametric oscillators [38,39].
Several theoretical paradigms have been used to describe
these situations, including the Lugiato-Lefever [40] and the
Rosanov or Ginzburg-Landau equations [41]. All these
systems share invariance under the mirror symmetry of the
variables in which localization occurs. When LSs are
implemented in the transverse section of semiconductor
microcavities, an additional equation accounts for carriers
dynamics but it still preserves the overall parity [33] and the
hosted LSs are motionless when the underlying medium is
homogeneous. Because of translational invariance, LSs
exhibit a Goldstone mode [31,42] which is excited by any
inhomogeneous parameter variation, inducing their motion
[43–45]. Since the velocity, instead of the acceleration, is

proportional to the parameter variations, the latter is
interpreted as an Aristotelian force.
More recently, delayed systems have been analyzed from

the perspective of their equivalence with spatial extended
systems [46] and proposed for hosting LSs, fronts, and
chimera states [47–51]. In general, the noninstantaneous
and causal response of the medium implies a lack of parity
in their spatiotemporal representation. In this Letter we
show that, in an explicitly parity broken system, the
dynamics of temporal LSs in a modulated parameter
landscape is fundamentally different from the ones found
in parity preserving situations. While in the latter the
motion of the LSs depends exclusively on the parameter
gradient, we reveal the existence in the former of another
contribution inducing a dependence of the velocity field
on the local parameter value. We consider an experimental
situation where this contribution is dominant and we
formulate a new paradigm for LSs manipulation.
Moreover, we show that parity breaking leads to asym-
metrical repelling forces between LSs.
In a parity broken system, traveling waves are the only

possible solutions and the behavior of LSs can be described
considering a generic partial differential equation (PDE) for
a field Eðz; tÞ

∂E
∂t þ υðμÞ ∂E∂z ¼ μEþ F

�
jEj2; ∂

2

∂z2
�
Eþ Y; ð1Þ

with F a general nonlinear function whose explicit
expression is not needed. We note that Eq. (1) encompasses
the cases previously mentioned [40,41] and we assume that
it supports drifting LSs solutions defined as Eðz; tÞ ¼
pðz − υtÞ with pðuÞ an even function. For the sake of
clarity, Eq. (1) is written in a comoving frame such that
υðμ0Þ ¼ 0. Experimentally, when a single parameter is
modulated, it may affect several terms of the PDE and
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we consider the most general case where the modulation
affects an even and an odd derivative, i.e., the linear gain μ
and the drift velocity υðμÞ. The influence of a small
parameter variation μ ¼ μ0 þmðzÞ can be studied by a
variational approach [52] writing E ¼ p½z − z0ðtÞ�, which
allows finding that the position z0 of the LS evolves
according to

dz0
dt

¼
� R

p† · pzdz
−
R
p† · _pdz

�
dm
dz

ðz0Þ þ
�
dυ
dμ

ðμ0Þ
�
mðz0Þ; ð2Þ

with a · b the dot product of complex numbers, and p† and
_p two odd eigenfunctions representing the adjoint and
direct neutral translation modes. Because of the term
ðdυ=dμÞ coming from SB, the LS speed is proportional
to the local value of the parameter mðzÞ; if this term is
neglected, one recovers the case where LS motion is purely
proportional to the gradient of mðzÞ.
These general considerations can be applied to the case of

LSs hosted in a laser field Eðz; tÞ coupled to a distant
saturable absorber (SA). While this scheme leads to conven-
tional passive mode-locking (PML) for cavity round-trips τ
shorter than the gain recovery time τ < τg, we operate in the
long cavity regime τ ≫ τg, and for bias currents below the
lasing threshold of the compound system. In this regime the
PML pulses become localized, i.e., they become lasing LSs
[53] which can be individually addressed by an optical or
electrical perturbation [54]. By denoting Gðz; tÞ the gain
andQðz; tÞ the saturable absorption, the Haus equations [55]
governing their dynamics reads

∂E
∂t ¼

� ffiffiffi
κ

p �
1þ1− iα

2
G−

1− iβ
2

Q

�
−1þd

∂2

∂z2
�
E; ð3Þ

∂G
∂z ¼ ΓG0 −GðΓþ jEj2Þ;
∂Q
∂z ¼ Q0 −Qð1þ sjEj2Þ; ð4Þ

where time has been normalized to the SA recovery time, α
and β are the linewidth enhancement factor of the gain and
absorber sections, κ the fraction of the power remaining in
the cavity after each round-trip, G0 the pumping rate, Γ ¼
τ−1g the gain recovery rate, Q0 the modulation depth of the
SA, s the ratio of the saturation energy of the SA and of the
gain sections, and d ¼ ð2γ2Þ−1 with γ the bandwidth of
the spectral filter. In Eq. (3), the spatial variable z denotes
the propagation along the cavity axis and corresponds to a
fast temporal scale for the LSs evolution within the cavity
round-trip, while t is the slowly evolving time scale related
to the LSs evolution after each roundtrip. The steady states
of Eqs. (3) and (4) are the periodic solutions of the PML
laser and Eqs. (3) and (4) are subject to periodic boundary
conditions ðE;G;QÞðzþ τ; tÞ ¼ ðE;G;QÞðz; tÞ.

As the Eqs. (4) are only first order in z, LSs stem here
from a parity broken PDE and they exhibit a strong drift.
The adiabatic elimination of G and Q would cancel such a
drift and reduce Eq. (3) to the Ginzburg-Landau equation.
Although in a semiconductor medium the adiabatic elimi-
nation of the absorption may be sound, it cannot be applied
to the gain because τg is much longer than the pulse
width τp ∼ γ−1. In our case, the bias current G0 controls at
the same time the linear gain, whose expression is
μ ¼ ffiffiffi

κ
p ð2þG0 −Q0Þ=2 − 1, but also higher order spatial

derivatives due to the noninstantaneous response of the
medium. Assuming that E ≪ 1 and ∂zG0 ≪ ΓG0, GðzÞ
then can be expressed as

GðzÞ ∼ G0ðzÞ
�
1 −

Z
∞

0

jEðz − rÞj2e−Γrdr
�
: ð5Þ

Expanding Eðz − rÞ in Taylor series in r and integrating
over r leads to an infinite series of even and odd derivatives
of E with respect to z. The odd terms contribute to the drift
of the solutions and to SB. This establishes the conceptual
link with the generic situation depicted in Eq. (1).
The Eqs. (3) and (4) were solved in Ref. [53] for the LSs

energy; here we calculate also the LS drift velocity as a
function of the bias current. A typical asymmetrical profile
can be observed in Fig. 1(a) while the bifurcation diagrams
are depicted in Figs. 1(b) and 1(c). The solution branch
for the energy of the pulse P ¼ R∞

−∞ jAj2dz depicted in
Fig. 1(c) shows the typical square root behavior consistent
with the fact that the LSs arise as a saddle-node bifurcation
of limit cycle [53]. Importantly, one notices that the drift
velocity, or, equivalently, the deviation of the period with
respect to the round-trip, is a strongly evolving function of
the bias current. The lack of the ðz → −zÞ symmetry is
ultimately a consequence of the causality principle, because
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FIG. 1. (a) Profiles of the field intensity jEj2, the carrier
G and absorption Q. (b),(c) Bifurcation diagram of the stable
solution branch for the drift velocity and the energy. Parameters
are ðγ;κ;α;β;Γ;Q0;sÞ¼ð40;0.8;1;0.5;0.04;0.3;30Þ.
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the response of the medium is necessarily asymmetric with
respect to an intensity variation, as shown in Fig. 1(a)
and Eq. (5).
Experimental evidence of this phenomenon is obtained

using the setup described in Refs. [53,54] and by modu-
lating the pumping current of a VCSEL mounted in an
external cavity closed by a resonant saturable absorber
mirror. When the modulation frequency νm is almost
resonant with the cavity free spectral range νc, i.e., for
small values of the detuningΔ ¼ νm − νc, a quasistationary
parameter variation is introduced inside the cavity. In line
with the theoretical analysis, LSs’ dynamics in this
parameter landscape can be pictured using a pseudo-
spatiotemporal representation, where the temporal trace
is folded onto itself after a time that corresponds to the
cavity round-trip ν−1c . Accordingly, the round-trip number n
becomes a slow time variable proportional to t while the
pseudospace variable z corresponds to the position within
the round-trip [46]. However, to simplify their interpreta-
tion, we present these diagrams in the reference frame of
the modulation signal, i.e., using a folding parameter ν−1m .
We first modulate sinusoidally the pumping current

around J ¼ Jcw and we represent in Figs. 2(a)–2(c) the
evolution of LS position on the current modulation land-
scape. When Δ ¼ 0 the LS exhibits a fixed position with
respect to the modulation signal which is located on the zero

of the modulation on its positive slope. If jΔj is small enough
(−4.75 kHz < Δ < 2.5 kHz), the LS still sits in a stationary
position with respect the modulation signal. We show in
Fig. 2(a)–2(c) that this position gets closer to the modulation
peak (bottom) for increasing positive (negative) value of Δ.
It is worth noting that all stationary positions found varying
Δ are located on the positive slope of the modulation. The
presence of a finite Δ should induce a drifting speed υΔ
which is given by υΔ ¼ Δν−2c in the limit of Δ ≪ νc. The
fact that the LS remains locked to stationary positions in the
modulation, as shown in Figs. 2(a)–2(c), indicates that
another Aristotelian force equilibrates υΔ.
These results can be explained by assuming that a current

variation around J ¼ Jcw induces a drifting speed υJ of the
LS which depends on the value of J instead of its time
derivative, as suggested by the theoretical analysis. At each
stationary position found for a given Δ ≠ 0, υΔ is com-
pensated by an opposite drifting speed induced by current
variation υJ such that υΔ þ υJ ¼ 0. Accordingly, from the
value of the current at the stationary positions, it is possible
to establish the dependence of υJ on ðJ − JcwÞ, as shown in
Fig. 2(d). In agreement with the theory, υJ is a decreasing
function of J. This explains why the stable equilibrium
points are located only on the positive slope of the
modulation: J plays a restoring (diverging) role on positive
(negative) slope with respect to deviations from the
equilibrium point.
For values of Δ outside the above specified interval, υΔ

cannot be balanced by υJ at any current values spanned by
the modulation and the LS starts to drift in the space-time
diagram, as shown in Figs. 3(a) and 3(b), in a way
reminiscent of the Adler unlocking mechanism of a forced
oscillator. In the limit of large detuning, the motion becomes
uniform because jυΔj ≫ jυJj. From the LS time law,
extracted from Fig. 3(a), we infer the instantaneous velocity
of the LS in the space-time diagram, that we represent in
Fig. 3(c), red curve. On the other hand, the speed can also be
calculated by adding υΔ þ υJ, where the first addendum is
obtained from the value ofΔ and the second is obtained from
the curve υJðJ − JcwÞ plotted in Fig. 2(d), using the value of
J corresponding to the position of the LS on the modulation

FIG. 2. (a)–(c) Spatiotemporal diagrams of the LS position
evolution (black line) when the current is sinusoidally modulated
(color scale in mA) with an amplitude δJ ¼ 120 mA around
Jcw ¼ 226 mA and νm ¼ 66614250 Hz. The detunings are
(a) Δ¼−4.75 kHz, (b) Δ¼−0.25 kHz, and (c) Δ ¼ 1.75 kHz.
(d) LS drifting speed induced by the variation of J (circle) and
best fit with a square-root function.

round-trip (x 103) 
0 2 4 6

  (
ps

/r
ou

nd
-t

ri
p)

-2  

-1.5

-1  

-0.5

0   

(c)(a)

time (ns)
0 5 10 15

ro
un

d-
tr

ip
  (

 x
 1

03  )

0

2

4

6

(b)

time (ns)
0 5 10 15

-50

0

50

FIG. 3. (a),(b) Spatiotemporal diagrams of the LS position evolution (black line) over the current modulation (color scale in mA).
(a) Δ ¼ −9.25 kHz, (b) Δ ¼ 3.25 kHz, all other parameters as in Fig. 2. (c) LS drifting speed (red) calculated from the derivative of the
trajectory shown in (a) and calculated as υΔ þ υJ (dots) with υJ obtained fitting the curve υJ in Fig. 2(d) with J the value of the current
along the trajectory.
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landscape. The results obtained are represented in Fig. 3(c)
using blue dots. The two curves representing the instanta-
neous velocity coincide, thus indicating that LS’s speed
depends only on the local current value, while the derivative
of the modulation signal is not playing any relevant role.
We realized another experiment using a bivalued rec-

tangular current modulation with upper and lower values
Ju;l. Because a large set of current values is spanned at the
pulse rising edge, it becomes an anchoring region for the
LSs for a wide set of values of Δ. Yet, when Δ falls outside
the locking interval, the LS drifts in the space-time diagram
and it exhibits two clearly different speeds in the regions
where J ¼ Ju and J ¼ Jl. This gives further evidence that
LS speed does not depend on the time derivative of the
modulation, otherwise it would be identical on the two
current plateaus.
When several LSs are present into the cavity, interaction

forces come into play and the current landscape enables
their analysis. The LSs evolution when the rectangular
current modulation is suddenly applied at round-trip
N ¼ 800 is shown in Fig. 4(a). Let us identify the LSs
from 1 to 3 using their position from left to right. LS3
acquires a strong negative speed when passing on the high
current plateau as Ju > Jcw while the two leftmost LSs
acquire a positive speed since Jl < Jcw. All the LSs try to
reach the rising edge of the modulation but, when LS2 and
LS3 get too close at N ¼ 4500, repulsive interaction
prevents LS3 to occupy the stable equilibrium position
where υΔ þ υJ ¼ 0, which is instead occupied by LS2.
Hence, LS3 sits at a position shifted of 0.8 ns, where the
repulsive force generated by LS2 balances the Aristotelian
forces υΔ þ υJðJu − JcwÞ. This situation further evolves
[not shown in Fig. 4(a)] when LS1 reaches the rising front
and pushes the other two LSs to the right to occupy the
position previously occupied by LS2. The three LSs then
remain eventually gathered around the rising front of the
electrical pulse at a mutual distance of 0.8 ns. This situation

is similar to the one shown in Fig. 4(b) before the
modulation is removed at N ¼ 1200. Hereafter, the LSs
evolve exclusively under the action of repulsive forces and
their dynamics reveal that the action-reaction principle is
violated as for instance LS1 interacts with LS2 but not vice
versa. The asymmetry of the interaction is due to the broken
parity and follows from the causality principle.
Such a dynamics in a modulated parameter landscape

can be theoretically analyzed with the results of Fig. 1.
Close to the saddle-node bifurcation, we approximate the
drift as a function of the current as

υ ¼ fυðG0Þ ¼ υ0 þ Δυ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0 −Gsn

p
; ð6Þ

and similarly P ¼ fPðG0Þ. The coefficients ðυ0;Δυ;
P0;ΔPÞ and Gsn are given by the bifurcation diagram of
a single LS in Figs. 1(b) and 1(c). In the comoving frame of
the external periodic potential, the equation for the relative
drift velocity Eq. (6) transforms into ~υþ υΔ ¼ fυðG0Þwith
υΔ the velocity of the drifting potential and ~υ the residual
speed. In this reference frame, the external potential
depends only on the fast time z and not anymore on the
slow time t. As the characteristics of the PML pulses
depend only on the gain value at the leading edge GðiÞ, we
replace in Eq. (6) G0 → GðiÞ. During the gain depletion
occurring around the pulse, the so-called fast stage, only the
strongly nonlinear stimulated terms in Eqs. (4) are relevant
and the gain at the falling edge of the LS is simply
GðfÞ ¼ GðiÞ exp ð−PÞ. Provided that the variations of the
bias current G0ðzÞ are slower than τg, the solution of the
carrier equation in between LSs reads

Gðz2Þ ¼ Gðz1Þe−ΓD2 þG0ðz2Þð1 − e−ΓD2Þ; ð7Þ
with Dn ¼ zn − zn−1 and Gðz1Þ an arbitrary initial con-
dition. By denoting as zn the position of the nth LS whose
residual velocity is ~υn ¼ dzn=dt we find that
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FIG. 4. Experimental spatiotemporal diagrams showing the evolution of three LSs when an electrical square pulse of 4 ns is applied (a)
and removed (b) to the pumping current (color scale in mA). The current pulse amplitude is 120 mA and Jcw ¼ 220 mA. In (b) Δ ¼ 0,
while Δ is slightly negative in (a) explaining the negative drifting speed from N ¼ 0 until N ¼ 800. Panel (c): Numerically calculated
trajectory using Eqs. (8),(9), with parameters ðυ0;Δυ; P0;ΔPÞ ¼ ð0;−0.01; 0.28; 0.7Þ, Gsn ¼ 0.845Gth and υΔ ¼ −2.35 × 10−3. Other
parameters as in Fig. 1.
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dzn
dt

¼ fυ½GðiÞ
n � − υΔ; Pn ¼ fP½GðiÞ

n �; ð8Þ

GðiÞ
n ¼ GðiÞ

n−1e
−Pn−1−ΓDn þG0ðzÞð1 − e−ΓDnÞ: ð9Þ

For N − LSs with n ∈ ½1;…; N�, the periodic boundary
conditions linking the gain depletion of the rightmost LS to
the dynamics of the leftmost is z0 ¼ zN − τ. The repulsive
interactions mediated by the gain depletion is exemplified
in Fig. 4(c), where, as shown in the experiment, LSn affects
LSnþ1 but not vice versa. The source of the asymmetry is
visible in Eq. (9) and the interactions are repulsive since the
velocity is a decreasing function of the current ðΔυ < 0Þ.
In conclusion, we described the dynamics of LSs in

systems with an explicitly broken parity symmetry appear-
ing because of the causality principle. Our analysis reveals
that the Aristotelian forces ruling their dynamical behavior
are very different from the ones found in parity preserving
conditions. These results pave the way towards control and
manipulation of LSs for information processing in broken
parity systems and, in particular, to the control of three-
dimensional light bullets in semiconductor lasers [56].
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