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We study numerically the saddle point structure of two-dimensional lattice gauge theory, represented by
the Gross-Witten-Wadia unitary matrix model. The saddle points are, in general, complex valued, even
though the original integration variables and action are real. We confirm the trans-series and instanton gas
structure in the weak-coupling phase, and we identify a new complex-saddle interpretation of non-
perturbative effects in the strong-coupling phase. In both phases, eigenvalue tunneling refers to eigenvalues
moving off the real interval, into the complex plane, and the weak-to-strong coupling phase transition is
driven by saddle condensation.
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Introduction.—Path integral saddle points are physically
important in quantum mechanics, matrix models, quantum
field theory (QFT), and string theory, and they are deeply
related to the typical asymptotic nature of weak-coupling
perturbative expansions. Such relations are central to the
concept of resurgence, whereby different saddles are
intertwined by monodromy properties that connect them
and account for Stokes phases. The theory of resurgence
has recently provided new insights into matrix models and
string theories [1–6], and it has been applied to asymp-
totically free QFTs and sigma models [7–10], and local-
izable supersymmetric QFTs [11]. One motivation for such
QFT studies is to find a practical numerical implementation
of a semiclassical expansion that could provide a Picard-
Lefschetz thimble decomposition of gauge theory, either in
the continuum or on the lattice, especially for theories with
a sign problem [12,13]. A unifying theme in these studies,
and in related work [14–17], is the appreciation that
complex saddles are important, particularly in the context
of phase transitions, even though the original “path
integral” may be a sum over only real configurations.
In gauge theories, there are two physical parameters which

control the strength of fluctuations around the saddle points
and enter the resurgent trans-series expansion: the rank N of
the gauge group and the ’t Hooft coupling λ≡ Ng2, with
gauge coupling g2 [18]. The interplay between the depend-
ence on N and λ leads to novel effects [1,2,6] which we
explore here. An important goal would be to construct
uniform resurgent approximations [19] (with respect to λ
and 1=N) which analytically relate the weak- and strong-
coupling phases. For gauge theories, such a relation would
certainly improve our understanding of confinement and
dynamical mass gap generation. It would also extend the
applicability of diagrammatic Monte Carlo studies of non-
Abelian lattice gauge theories,which thus far are limited to the
regime of unphysically strong bare coupling constants [20].

The difference between weak- and strong-coupling
phases is particularly dramatic in the large-N limit of 2D
gauge theories, where they are separated by a third-order
phase transition with respect to the ’t Hooft coupling λ
[21–24] and/or the manifold area A [25,26]. Physically, on
the weak-coupling side this large-N phase transition in 2D
gauge theory is related to the condensation of instantons
[24,26,27], which are exponentially suppressed at a large N
away from the transition point. Much less is known about
the role of instantons (or other saddles) on the strong-
coupling side of this transition, except in the double-scaling
limit. Here, we study the simplest example of 2D lattice
gauge theory, the Gross-Witten-Wadia unitary matrix
model [21–23], to demonstrate the novel properties of
complex saddles in the strong-coupling phase as well as
their relation to the resurgent structure of the 1=N
expansion.
Gross-Witten-Wadia (GWW) model.—The partition

function is the integral Z¼R
DUexp½ðN=λÞTrðUþU†Þ�

overN×N unitary matricesU ∈ UðNÞ.Z can be expressed
in terms of the eigenvalues eizi of U [21,22]:

Z ¼
YN
i¼1

Z
π

−π
dzie−SðziÞ;

SðziÞ ¼
X
i

VðziÞ − lnΔ2ðziÞ;

VðzÞ ¼ −
2N
λ

cosðzÞ;

ΔðziÞ ¼
Y
i<j

sin

�
zi − zj

2

�
: ð1Þ

As N → ∞, the leading contribution is from a distribution
of eigenvalues zi along the line Rez ∈ ½−π;πÞ, Imz ¼ 0,
with a density function ρðzÞ, such that the number of
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eigenvalues in the interval ½z; zþ dz� is dn ¼ NρðzÞdz.
Writing the action S in terms of ρðzÞ identifies the large
parameter N2 in the exponent of the integrand, motivating a
saddle point analysis. At N ¼ ∞ this model has a third-
order phase transition at λc ¼ 2, where the third derivative
of the free energy E0ðλÞ ¼ − logZ=N2 is discontinu-
ous [21,22].
The GWW model is more than a toy model: it exhibits

the generic phenomenon of phase transitions driven by gap
closing in eigenvalue distributions [2,28], which is also
accompanied by the condensation of Lee-Yang zeros in the
complex coupling space [29] and which is common in
numerous physical systems, such as 2D continuum gauge
theory [25,26] and four-dimensional gauge theory at a large
N [30], string theory [31,32], large-N Chern-Simons theory
[33], general unitary and Hermitian matrix models [2,6],
and applications in mesoscopic conductance [34] and
entanglement entropy [35].
Complex saddles in the GWW model.—We numerically

solve the saddle equations ð∂S=∂ziÞ ¼ 0, zi ∈ C at a large
but finite N. We use the next-order improved Newton
iterations, the Halley method [36,37]. We find complex
saddles with novel properties not directly visible atN ¼ ∞.
In both phases, we find saddle configurations zi con-

sisting of ðN −mÞ real eigenvalues located on the line
Rez ∈ ½−π;πÞ, Imz ¼ 0, and m complex eigenvalues on the
line z ¼ π þ iy, y ∈ R. These lines are the steepest ascent
contours of the potential VðzÞ, originating from its extrema
at z ¼ 0 and z ¼ π. The saddle configurations of zi are all
symmetric with respect to these points; so, for odd m there
is always one eigenvalue exactly at z ¼ π. Examples of
saddle configurations in both phases are shown in Fig. 1 for
various values of m. The action for these saddles has a
real part plotted in Fig. 2, as a function of m, for three
different values of λ: below, at, and above the phase
transition. The imaginary part of SðzÞ is always a multiple
of π: ImSðzÞ ¼ π⌊m=2⌋, where ⌊ · ⌋ is the floor function, so
that the weight exp½−SðzÞ� is always real but can have either
sign. This sign comes exclusively from the Vandermonde
determinant Δ2ðzÞ, and it is interpreted as a hidden
topological angle [38].

Vacuum saddle.—We identify the m ¼ 0 saddle with the
planar (N ¼ ∞) contribution. As seen in Fig. 1, in the
weak-coupling phase, the m ¼ 0 saddle has a gapped
distribution of real eigenvalues localized around the stable
point z ¼ 0. At the phase transition λ ¼ 2, this distribution
closes at z ¼ π, becoming ungapped in the strong-coupling
phase. As shown in Fig. 3, the numerical distribution of
eigenvalues fits the N ¼ ∞ forms [21,22],

ρðwÞðzÞ ¼ 2

λπ
cos

�
z
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

2
− sin2

�
z
2

�s
; λ < 2 ð2Þ

ρðsÞðzÞ ¼ 1

2π

�
1þ 2

λ
cosðzÞ

�
; λ > 2: ð3Þ

Thus, the numericalm ¼ 0 free energy, −S0=N2, shows the
expected third-order phase transition at λ ¼ 2.
Nonvacuum saddles at weak coupling.—For λ < 2, the

lowest action nonperturbative saddle has m ¼ 1, with one
eigenvalue at z ¼ π, and has a real action (relative to the
vacuum action) exactly matching the weak-coupling instan-

ton action SðwÞI [2] (see Fig. 4),
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FIG. 1. Saddle point configurations of eigenvalues zi in the (a)–(d) weak-coupling and (e)–(j) strong-coupling phases with different
“instanton numbers”m. N ¼ 40 on all of the plots except for (h), where we take N ¼ 100 in order to illustrate the three-cut solution at a
large m and strong coupling.

FIG. 2. Real part of the saddle action, ReSðzÞ, versus the
instanton number m, for different values of λ, at N ¼ 40. (Inset)
ReSðzÞ vs m at λ ¼ 4 on a larger scale.
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SðwÞI ¼ 4=λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ=2

p
− arccosh½ð4 − λÞ=λ�; λ < 2:

ð4Þ

As m increases, m eigenvalues line up along the imaginary
direction z ¼ π þ iy, forming a cut (see Fig. 1). This is a
numerical indication of “eigenvalue tunneling,” but we note
that the tunneled eigenvalues are complex. For a small
m ≪ N, we find the conventional picture of a dilute
instanton gas, with the real part of the action lowest at
m ¼ 0, and scaling approximately linearly with m, as

ReðSm − S0Þ ¼ mNSðwÞI for m ≪ N, with SðwÞI being the
weak-coupling instanton action (4). We thus identify the
integer m, the number of eigenvalues along the imaginary
direction, with the instanton number in the weak-coupling
phase. The m-instanton saddles have Hessian fluctuation
matrices, Hm;ij ¼ ð∂2Sm=∂zi∂zjÞ, with m negative modes
(see Fig. 5). Thus, the m ¼ 1 saddle gives an imaginary
contribution to the saddle expansion of the free energy; we
have confirmed that this is canceled by an imaginary term
from the Borel summation of the divergent fluctuations
about the m ¼ 0 vacuum saddle, a clear indication of
resurgent cancellations. This can be traced to the resurgent
asymptotics of individual Bessel functions, using the
determinant representation [21,22] of the partition function:
Z ¼ det½ðIj−kð2N=λÞ�.
Saddle condensation phase transition.—As λ → 2 from

the weak-coupling side, the gap in the real part of the
eigenvalue distribution closes at the unstable point (z ¼ π)
(see Figs. 1 and 3). Furthermore, as seen in Fig. 2, the real
part of the saddle action, relative to the vacuum value, tends
to zero, so that all instantons with m ≪ N become equally
important at the transition point, signaling instanton con-
densation [2,24,26].
Nonvacuum saddles at strong coupling.—Since the

unstable point z ¼ π is already in the support of ρðsÞðzÞ,
in the conventional picture nonvacuum saddles can no

longer be constructed by dragging eigenvalues to z ¼ π.
Nevertheless, Mariño obtained the following strong-
coupling “instanton action” using a trans-series ansatz in
the string equation [2] (see also Appendix B in Ref. [39]):

SðsÞI ¼ 2arccoshðλ=2Þ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4=λ2

q
; λ ≥ 2: ð5Þ

Our numerical approach yields a natural interpretation of
this “instanton” as a saddle configuration, with complex
eigenvalue tunneling from the real to the imaginary axis
(see Fig. 1). As in the weak-coupling phase, m eigenvalues
line up along the imaginary direction, but these strong-
coupling saddles have some surprising properties.
(i) In the strong-coupling phase, at a large N, the m ¼ 1

saddle has real action degenerate with that of the m ¼ 0
saddle, up to exponentially small corrections precisely of

the form expð−N=2SðsÞI Þ, where SðsÞI ðλÞ is the strong-
coupling instanton action (5); see Fig. 6. Physically, this
is due to a quasizero mode in the strong-coupling regime.
The m ¼ 0 and m ¼ 1 configurations have the same
continuous eigenvalue density but differ microscopically
by the presence or absence of a single eigenvalue at z ¼ π
[see Figs. 1(e) and 1(f)]. To leading order in 1=N, they can
be related by a shift of every eigenvalue to the middle of the
interval to its neighboring eigenvalue. At a large N this
interval is inversely proportional to the density function
ρðzÞ, so the shift of all eigenvalues by δzi ∼ 1=ρðziÞ is a flat
direction of the action. Correspondingly, at N → ∞, δzi is
the eigenvector of the Hessian Hij ¼ ð∂2S=∂zi∂zjÞ with
zero eigenvalue [40]. Numerically, we have found that as
N → ∞, the lowest eigenvalue ξ0 vanishes exponentially

fast as expð−N=2SðsÞI Þ (see Figs. 5 and 6). Interestingly, this
is the same exponential factor seen in the split-
ting ReðS1 − S0Þ.
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(ii) At strong coupling, it is not the m ¼ 1 saddle, but
rather the m ¼ 2 saddle which we identify as the “strong-
coupling instanton” configuration. This saddle is mani-
festly complex [Fig. 1(g)]. It has an action with a real part
equal to, as a function of λ, the modulus of the strong-

coupling action (5): jReðS2 − S0Þj ¼ NSðsÞI ðλÞ, as shown in
Fig. 4. This reversal of sign is a numerical example of a
phenomenon found in the context of the Painlevé equa-
tions, where formal trans-series arise with saddles of both
signs of the action [4,5,41].
(iii) At strong coupling, asm increases more eigenvalues

move away from the real axis, forming a distinct two-cut
structure around z ¼ π (with one eigenvalue in the gap at
z ¼ π if m is odd); see Fig. 1(h). The real part of the action
decreases with m until it reaches a critical value m⋆, after

which it increases again; see Fig. 2. Whenm reachesm⋆ the
gap between the two cuts closes, and at the same time
the distribution of the remaining eigenvalues on the real
axis becomes gapped [Figs. 1(i) and 1(j)]. The saddle
point action scales linearly with m for m ≪ m⋆:
jReðSm − S0Þj ≈ ⌊m=2⌋NSðsÞI , where SðsÞI is the strong-
coupling instanton action (5). Note the floor function in
this expression, which implies that the aforementioned
degeneracy of the action for m ¼ 0 and m ¼ 1 persists also
for the pairs of saddle points withm ¼ 2n andm ¼ 2nþ 1,
form < m⋆ (see the “stairs” at lowm in the inset in Fig. 2).
Correspondingly, the Hessian matrices for all saddles with
m < m⋆ have quasizero modes, vanishing exponentially
with N (see Fig. 5), as for the m ¼ 1 saddle, but with an
m-dependent prefactor.
(iv) As in the weak-coupling phase, at strong coupling

the Hessian matrix for the m saddle has m negative modes
(see Fig. 5). However, in the strong-coupling phase, all
eigenvalues except for the zero mode become doubly
degenerate, with degeneracy splitting governed again by

the exponentially small quantity expð−N=2SðsÞI ðλÞÞ.
Our numerical results indicate that the GWW partition

function and free energy also have trans-series expansions in
the strong-coupling phase due to complex saddle points. This
provides a (complex) saddle interpretation ofMariño’s trans-
series result from the string equation [2] and is also consistent
with the double-scaling limit described by the McLeod-
Hastings solution to the Painlevé II equation, valid near the
phase transition. On theweak-coupling side this solution has

exponential corrections∼ expð−NSðwÞI Þ, while on the strong-
coupling side the leading behavior is already exponential

expð−N=2SðsÞI Þ, which implies expð−NSðsÞI Þ behavior for the
free energy [2]. Furthermore, deep in the strong-coupling
region, with λ ≫ 2, and using the method of orthogonal
polynomials, Goldschmidt found [39] corrections behaving

like ð1=N2Þðλ=eÞ−2N ∼ ð1=N2Þ exp½−NSðsÞI ðλÞ� [note that

SðsÞI ∼ 2 ln ðλ=eÞ þ ð2=λ2Þ þ…, for λ ≫ 2].
Conclusions.—Our numerical study reveals a surpris-

ingly rich structure of complex-valued saddles in both the
weak- and strong-coupling phases of two-dimensional
lattice gauge theory, represented by the Gross-Witten-
Wadia unitary matrix model. These complex saddles are
intimately related to the resurgent structure of the 1=N
expansion. We find a new complex-saddle interpretation of
Mariño’s strong-coupling instanton action, and these sad-
dles have novel physical properties. There is clear numeri-
cal evidence for instanton condensation at the transition.
In both phases, eigenvalue tunneling produces complex
saddles, and these results suggest a Lefschetz thimble
interpretation of the saddle point expansion. Given the
direct relation between the instanton actions in the matrix
model (1) and in 2D continuum gauge theory [2], we expect
similar results for complex-valued saddles to apply also to
continuum 2D gauge theories [25,26].
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