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We study quantum electrodynamics in d ¼ 3 coupled to Nf flavors of fermions. The theory flows to an
IR fixed point for Nf larger than some critical number Nc

f. For Nf ≤ Nc
f, chiral-symmetry breaking is

believed to take place. In analogy with the Wilson-Fisher description of the critical OðNÞ models in d ¼ 3,
we make use of the existence of a fixed point in d ¼ 4 − 2ϵ to study the three-dimensional conformal
theory. We compute, in perturbation theory, the IR dimensions of fermion bilinear and quadrilinear
operators. For small Nf, a quadrilinear operator can become relevant in the IR and destabilize the fixed
point. Therefore, the epsilon expansion can be used to estimate Nc

f . An interesting novelty compared to the

OðNÞ models is that the theory in d ¼ 3 has an enhanced symmetry due to the structure of 3D spinors. We
identify the operators in d ¼ 4 − 2ϵ that correspond to the additional conserved currents at d ¼ 3 and
compute their infrared dimensions.
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Introduction.—We consider an R gauge theory in d ¼
2þ 1 dimensions, coupled to 2Nf complex two-component
massless fermions of unit charge, ψ i (i ¼ 1;…; 2Nf). This
theory has an SUð2NfÞ global symmetry [1]. When Nf is
sufficiently large, the theory flows to a stable interacting
fixed point with an SUð2NfÞ global symmetry. (It is stable
in the sense that there are no relevant operators preserving
all the symmetries). However, the IR behavior is different
if the number of fermions is smaller than a critical value
Nf ≤ Nc

f, leading to spontaneous symmetry breaking
according to the pattern [2]

SUð2NfÞ → SUðNfÞ × SUðNfÞ ×Uð1Þ: ð1Þ
This symmetry breaking pattern can be triggered by the
condensation of the parity-even operator

XNf

a¼1

ðψ̄aψ
a − ψ̄aþNf

ψaþNfÞ: ð2Þ

Various estimates of the critical number Nc
f exist in the

literature.
In condensed matter physics this theory has been

advocated as an effective description of various strongly
correlated materials. Quantum electrodynamics in d ¼ 3
(QED3) can arise as the continuum limit of spin systems
with various values of Nf, e.g., Nf ¼ 2, 4.[3–5] The theory
with Nf ¼ 2 also has applications in high-temperature
superconductivity [6–8].
A method that has been employed to study QED3 is the

large-Nf expansion [9–14]. At large Nf, the theory
simplifies and a systematic expansion in 1=Nf can be
carried out. For an alternative to large Nf that uses the
functional renormalization group approach see Ref. [15].
Here, we study QED3 using the epsilon expansion.

Clearly, since the theory is IR free in d ¼ 4 and since

the gauge coupling has positive mass dimension for d < 4,
there is an IR fixed point at d ¼ 4 − 2ϵ with ϵ > 0. The
fixed point is generated analogously to the Wilson-Fisher
fixed point [16].
In the development of the epsilon expansion for QED

one encounters some new technical difficulties that do not
arise for OðNÞ models. Perhaps one reason that (to our
knowledge) it has not been considered before is that spinor
representations of the Poincaré group do not behave very
simply as a function of the number of dimensions (unlike
tensor representations) [17]. Hence, it may not be obvious
how to analytically continue to d. However, there appears
to be no fundamental obstruction to studying QED with
d ≤ 4. We will keep the spinor structure that exists in d ¼ 4
also in lower dimension. In lower integer dimension, the
representation is reducible and can be interpreted in terms
of the existing spinor structures in d ¼ 3 and d ¼ 2.
The fact that spinor representations are smaller in d ¼ 3

than in d ¼ 4 enhances the symmetry of the theory.
The theory in d ¼ 3 enjoys an SUð2NfÞ global symmetry,
while the theory in d ¼ 4 (around which we expand) only
an SUðNfÞ×SUðNfÞ symmetry. We find that in d¼ 4−2ϵ
certain antisymmetric tensor operators, bilinear in the
fermions, are naturally interpreted as continuations of the
enhanced currents of the three-dimensional theory. This
suggests that the epsilon expansion provides the necessary
elements to correctly describe the theory in d ¼ 3.
Here, we only perform leading-order computations in the

epsilon expansion of QED. Going to higher orders will be
necessary to acquire more confidence about the accuracy of
the method, and to estimate the uncertainties [21]. We
consider bilinear and quadrilinear operators in the fer-
mions. We shall see that a certain quadrilinear operator
invariant under SUð2NfÞ and parity can become relevant in
the IR for low values of Nf, and may destabilize the fixed
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point. At leading order in ϵ, evaluating the dimension
naively at ϵ ¼ 1=2 without any resummation leads to
Nc

f ¼ 2. This is consistent both with the F theorem [22]
and with lattice data [23–26]. (A different estimate that uses
input from the d ¼ 2 flavored Schwinger model gives
Nc

f ¼ 4). We also estimate the dimensions of these bilinear
and quadrilinear operators at the fixed point for Nf > Nc

f.
For comments on the theory with compact gauge group, see
the Supplemental Material [27].
Generalities of the epsilon expansion.—To illustrate the

procedure of the epsilon expansion, consider the two-point
function of an operator O in d ¼ 4, expanded in perturba-
tion theory in a classically marginal coupling g

hOðpÞOð−pÞi ¼ p2Δ−4
X∞

0≤m≤n;n¼0

cnmgn
�
log

Λ2

p2

�
m

; ð3Þ

where Δ is the dimension of O in d ¼ 4 at g ¼ 0, and Λ
is an UV cutoff. Introducing the renormalized operator
Oren ¼ ZO, we can cancel the Λ dependence of the
correlator by allowing the coupling g and the normalization
Z to evolve according to dg

d logΛ ≡ βðgÞ, d logZ
d logΛ ≡ γðgÞ, such

that the Callan-Symanzik equation holds
� ∂
∂ logΛþ βðgÞ ∂

∂gþ 2γðgÞ
�
hOðpÞOð−pÞi ¼ 0: ð4Þ

The terms in Eq. (3) with coefficients cnn, n ≥ 1, are the
leading logs. It follows from Eq. (4) that they are all fixed in
terms of the coefficients β1 and γ1 in the leading order
expansion of β and γ

βðgÞ ¼ β1g2 þOðg3Þ; γðgÞ ¼ γ1gþOðg2Þ: ð5Þ
One can then resum the leading logs to obtain

hOðpÞOð−pÞi≃ p2Δ−4
�
1þ 1

2
β1g log

Λ2

p2

�−ð2γ1=β1Þ
: ð6Þ

For d ¼ 4 − 2ϵ we assume that g acquires a positive
mass dimension cϵ (where c is some positive number). The
analogue perturbative expansion of the two-point function
in d ¼ 4 − 2ϵ is

hOðpÞOð−pÞi ¼ p2Δ−d
X∞
n¼0

cn

�
g
pcϵ

�
n
: ð7Þ

Requiring that Eq. (7) approaches Eq. (3) in the limit
ϵ → 0, we find the matching condition

cn ¼
Xn
m¼0

cnmm!

�
2

cϵ

�
m
þOðϵÞ: ð8Þ

The leading contribution to the two-point function, Eq. (7),
in the limit ϵ ≪ 1 comes from the terms containing cnn,
which we can thus resum similarly to Eq. (6)

hOðpÞOð−pÞi≃ p2Δ−d
�
1þ β1

cϵ
g
pcϵ

�
−ð2γ1=β1Þ

≈
p→0

p2Δ−dp2γ1ðcϵ=β1Þ: ð9Þ

In the IR limit p → 0 a new scaling law emerges. The
contribution to the IR dimension of the operator at first
order in ϵ is thus

ΔIR ¼ Δþ γ1
cϵ
β1

þOðϵ2Þ: ð10Þ

The crossover to the IR scaling in Eq. (9) happens when

1 ≪
β1
cϵ

g
pcϵ ⇒ p ≪

�
β1
cϵ

�ð1=cϵÞ
gð1=cϵÞ: ð11Þ

We see here the physical consequence of introducing the
small parameter ϵ: the crossover towards the IR happens at
a scale that is enhanced by the parametrically large factor
ðβ1=cϵÞð1=cϵÞ with respect to the naive scale gð1=cϵÞ. As a
result, the IR fixed point is parametrically close to the one
in the UV.
Indeed, the IR fixed point corresponds to the zero of the

β function for the dimensionless combination ĝ ¼ gΛ−cϵ

dĝ
d logΛ

≡ βðĝÞ ¼ −cϵĝþ β1ĝ2 þOðĝ3Þ;

βðĝ�Þ ¼ 0 ⇒ ĝ� ¼
cϵ
β1

þOðϵ2Þ: ð12Þ

Comparison with Eq. (10) shows explicitly that, at leading
order in ϵ, the difference ΔIR − Δ is the anomalous
dimension γ evaluated at the fixed point [28,29].
Extrapolating the results to ϵ ¼ 1

2
, we obtain an estimate

for the observables of the IR theory in three dimensions.
Wilson-Fisher fixed point in QED.—The Lagrangian for

QED in d ¼ 4 is

L ¼ −
1

4e2
FμνFμν þ i

XNf

a¼1

Ψ̄aγ
μDμΨa: ð13Þ

We use the usual four-dimensional Dirac notation for the
spinors. Their decomposition in terms of two-component
fermions is

Ψa ¼
�

ψa

iσ2ψaþNf

�
; a ¼ 1;…; Nf: ð14Þ

In dimension d we take the Clifford algebra to be
fγμ; γνg ¼ 2ημν1, with ημνημν ¼ d. To leading nontrivial
order, the beta function in d ¼ 4 − 2ϵ is given by (here
ê ¼ eΛ−ϵ)

βðêÞ ¼ −ϵêþ Nf

12π2
ê3 þOðê5Þ: ð15Þ

The value of the coupling at the Wilson-Fisher fixed point
is ê2� ¼ 12π2ϵ=Nf. The theory is therefore weakly coupled
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when we are close to d ¼ 4 or when the number of flavors
is large.
A comment on γ5 is in order. A consistent definition of γ5

in noninteger dimension is due to ’t Hooft and Veltman
[30–32]. According to this prescription, γ5 anticommutes
only with the γμ’s of the four-dimensional subspace, and
commutes with all others. This implies an explicit breaking
of axial symmetries in d ¼ 4 − 2ϵ, and reproduces the
chiral anomaly for the singlet axial current

P
aΨ̄aγ

μγ5Ψa in
the limit ϵ → 0 [33,34]. For the leading-order calculations
that we present here, this prescription is in practice
equivalent to a naive continuation of γ5 as totally anti-
commuting. However, the difference from the naive con-
tinuation becomes relevant at higher orders.
QED in d ¼ 4 has an SUðNfÞ × SUðNfÞ global sym-

metry with associated conserved currents

ðJμÞba ¼ Ψ̄aγμΨb −
1

Nf
δba
X
c

Ψ̄cγμΨc;

ðJ5μÞba ¼ Ψ̄aγμγ5Ψb −
1

Nf
δba
X
c

Ψ̄cγμγ5Ψc: ð16Þ

Their anomalous dimension at one loop vanishes and,
therefore, at leading order the IR dimension is the same as
the classical one, i.e., d − 1. This is the correct scaling
dimension for conserved currents. For the vector current
this argument is valid at all orders in perturbation theory,
because they are conserved for any d. On the other hand,
the axial currents J5μ are explicitly broken for noninteger d,
[33] and this can affect the IR dimension at higher orders.
Nevertheless, we do expect them to be conserved in d ¼ 3,
because the nonconservation is given by an operator that
vanishes both in d ¼ 4 and d ¼ 3.
So far, we have argued that the epsilon expansion

predicts the existence of currents associated with the global
symmetry SUðNfÞ × SUðNfÞ in the IR Conformal Field
Theory (CFT) for d ¼ 3. However, QED3 has an enhanced
SUð2NfÞ symmetry. For Nf ≥ Nc

f, the full SUð2NfÞ is
realized linearly at the IR fixed point. This entails the
existence of 2N2

f þ 1 additional conserved operators of
spin 1 with protected dimension Δ ¼ 2. It is natural to ask
whether these operators are visible also in the theory
continued to noninteger dimension.
One of the additional currents is the singlet axial current

Jsμ ¼
P

aΨ̄aγμγ5Ψa. Indeed, the continuation of the
anomaly operator F∧F vanishes for d ¼ 3. As for the
remaining 2N2

f currents, we note that in d ¼ 4 − 2ϵ we can
define the following antisymmetric tensor operators

ðKμνÞba ¼ Ψ̄aγμνΨb; Ψ̄aγμνγ5Ψb: ð17Þ
They carry the correct flavor and Lorentz quantum numbers
to be identified with the additional currents, because in
d ¼ 3 we can use the totally antisymmetric tensor ϵμνρ and
dualize them to spin 1 operators.

We are led to the expectation that the IR dimension of Jsμ
and Kμν should evaluate to 2 for ϵ ¼ 1=2. The one-loop
computation gives

ΔIRðJsÞ ¼ 3 − 2ϵþOðϵ2Þ;

ΔIRðKÞ ¼ 3 − 2ϵþ 3ϵ

2Nf
þOðϵ2Þ: ð18Þ

The anomalous dimension of Js only starts at two-loop
order [34,35]. As we will show in the next section, we can
estimate that the IR critical point exists only for Nf ≥ 3.
Plugging Nf ¼ 3 and ϵ ¼ 1=2 into Eq. (18) we find

Δ1-loop
IR ðKÞ ¼ 2.25, which agrees with the expectation

within a 10% margin. The precision improves for larger
values of Nf. We view this as a hint that the continuation to
noninteger dimensions correctly captures the properties of
the 3D CFT that we ultimately want to study. A preliminary
check of higher orders in ϵ shows that the agreement
improves. This will be discussed in Ref. [21].
Note that we can also study the anomalous dimension of

the operator Fμν. The Bianchi identity is obeyed for all d,
and one can verify that ΔIRðFÞ ¼ 2 holds to all orders in ϵ.
Quadrilinear and bilinear operators.—In the three-

dimensional theory there are two parity-even quadrilinear
scalar operators that are invariant under the full SUð2NfÞ,

O1 ¼
�X

i

ψ̄ iσ
μψ i

�
2

and O2 ¼
�X

i

ψ̄ iψ
i

�
2

: ð19Þ

The operator O1 can be easily continued to d ¼ 4 − 2ϵ.
In Dirac notation we can rewrite it asO1 ¼ ðPaΨ̄aγμΨaÞ2.
To continue the operator O2, we use the fact that
in d ¼ 3 the antisymmetrization of three γ matrices is
proportional to the identity. Therefore, we can rewrite
it as O2 ¼ 6ðPaΨ̄aγ½μγνγρ�ΨaÞ2, which is a well-defined
expression also for d ¼ 4 − 2ϵ. Note that in d ¼ 4 this
operator can be identified with the square of the axial
current ðPaΨ̄aγμγ5ΨaÞ2.
To obtain their IR dimension we compute the mixing

between these two operators. Typical diagrams at one loop
are shown in Fig. 1. To obtain the correct mixing at one
loop, it is necessary to also take into account the one-loop
mixing with the operator OEOM ¼ ðPaΨ̄aγ

μΨaÞ ×
½ð1=eÞ∂νFμν −

P
bΨ̄bγμΨb� that vanishes on the equations

FIG. 1. Diagrams giving the mixing matrix of the quadrilinear
operators at one loop.
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of motion. This mixing is induced by the diagrams
in Fig. 2.
In the basis fO1;O2g, the matrix of anomalous dimen-

sions reads [36]

γOðêÞ ¼
ê2

16π2

� 8
3
ð2Nf þ 1Þ 12

44
3

0

�
þOðê4Þ: ð20Þ

Its eigenvalues are ê2

12π2
ð2Nf þ 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

f þ Nf þ 25
q

Þ.
By evaluating them for the fixed-point value

ê2� ¼ 12π2ϵ=Nf, we find that the operator corresponding
to the negative eigenvalue becomes relevant when
Nf ≤ ð9ϵ=2Þ þOðϵ2Þ. Thus, for ϵ ¼ 1

2
the operator is

relevant in the IR when Nf ¼ 1, 2, while it remains
irrelevant for any integer Nf > 2. Because the quadrilinear
is neutral under all the global symmetries, when it becomes
relevant it may be generated and trigger a flow to a new IR
phase (e.g., a Goldstone phase). From this we obtain the
estimate Nc

f ≤ 2 [37].
The same mechanism for the onset of chiral-symmetry

breaking has been studied using the large-Nf expansion
[38]. The large-Nf approximation of the anomalous
dimensions is such that O1 and O2 are always irrelevant
at the IR fixed point for Nf ≥ 1. (See, however, the
renormalization group study at large Nf in [39]).
Let us make a few comments on d ¼ 2. There, the

quadrilinear operator is marginal already at the tree-level.
Therefore, the criterion above implies that in d ¼ 2 the
anomalous dimension must evaluate to 0 at Nc

f. This is
satisfied for Nc

f ¼ ∞. This value is consistent with the IR
behavior of QED in d ¼ 2: for every finite Nf the theory
flows to an SUð2NfÞ Wess-Zumino-Witten (WZW) inter-
acting CFT [40,41], namely, a σ model with coset target
space deformed by a WZW term (exactly as one expects for
the Lagrangian of Nambu-Goldstone bosons). Even though
Nambu-Goldstone bosons do not exist in d ¼ 2, it appears
natural to interpret this theory as the continuation of the
chirally broken phase to d ¼ 2. See also Refs. [42,43].
Assuming that the anomalous dimension approaches 0 as
1=Nf for Nf → ∞, the divergence of Nc

fðdÞ for d ¼ 2 is
given by a simple pole. This suggests using the modified
ansatzNc

fðdÞ ¼ ðd − 2Þ−1fðdÞ in the equation forNc
f, which

can then be solved for f perturbatively in ϵ. With this
ansatz, the leading-order estimate becomes Nc

f ≤ 4.5. The

differencewith the previous estimate is higher-order terms in
ϵ; itmay beviewed as ameasure of uncertainty. Improving on
this requires computations beyond one loop [21].
Further data about the fixed point can be obtained by

considering bilinear scalar operators. There are two types of
scalar operators in the three-dimensional theory. Operators
of the first type are scalars also in d ≠ 3, i.e.,

ðB1Þba ¼ Ψ̄aΨb; Ψ̄aγ
5Ψb: ð21Þ

Operators in this class preserve at most the diagonal
SUðNfÞ subgroup of SUðNfÞ × SUðNfÞ, and the most
symmetric ones are

P
aψ̄aψ

aþNf � c:c. The one-loop
computation (see Fig. 3) gives

ΔIRðB1Þ ¼ 3 − 2ϵ −
9ϵ

2Nf
þOðϵ2Þ: ð22Þ

The second type of scalar operators are given by rank-
three antisymmetric tensors in d ¼ 4 − 2ϵ

ðB2μνρÞba ¼ Ψ̄aγ½μγνγρ�Ψb; Ψ̄aγ½μγνγρ�γ5Ψb: ð23Þ
They give rise to scalars in d ¼ 3 because they can be
contracted with the totally antisymmetric tensor ϵμνρ. The
chiral condensate Eq. (2) and the parity-odd, SUð2NfÞ-
invariant bilinear

P
iψ̄ iψ

i belong to this class of operators.
Since their anomalous dimension vanishes at leading order
in perturbation theory, their IR dimension to first order in ϵ
is captured by just the classical contribution

ΔIRðB2Þ ¼ 3 − 2ϵþOðϵ2Þ: ð24Þ
The anomalous dimension starts being nonzero at two-loop
order [34,44]. This implies that higher orders in ϵ in
Eq. (24) will be nonzero. Nevertheless, the epsilon expan-
sion suggests that the IR dimension of these scalar
operators is perhaps close to Δ ¼ 2.
Future directions.—In this Letter we initiated a study of

the critical point of QED3 based on the epsilon expansion.
Our results were based on leading-order computations. It
would be very interesting to sharpen the theoretical
predictions by higher-order computations [45]. The neces-
sary preliminary step of computing the two-loop counter-
terms was done for generic gauge theories with fermions in
Ref. [48]. Due to the asymptotic nature of the epsilon
expansion, efficiently including higher-order terms requires
the use of resummation techniques. (In this context, it
would be interesting to understand if data from the flavored
Schwinger model can be efficiently included).

FIG. 2. Diagrams giving the mixing matrix of O1 and O2 into
OEOM.

FIG. 3. The diagram giving the anomalous dimension of
bilinear operators at one loop.
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The epsilon expansion can be used to compute additional
observables of the IR fixed point. For instance, correlators of
the stress tensor and of conserved currents [49]. Another
interesting datumof the 3D theory is the universal coefficient
F of the partition function on the three-sphere, which gives
also the universal part of the entanglement entropy across a
circular region. For this one can utilize the techniques of
Refs. [52,53]. The calculation of F in QED3 via the epsilon
expansion has been recently presented in Ref. [54]. Another
interesting line of investigation would be to see if the
conformal bootstrap techniques shed any light onQED3 [55].
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