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By using a torsion pendulum and a rotating eightfold symmetric attractor with dual modulation of both
the interested signal and the gravitational calibration signal, a new test of the gravitational inverse-square
law at separations down to 295 μm is presented. A dual-compensation design by adding masses on both the
pendulum and the attractor was adopted to realize a null experiment. The experimental result shows that, at
a 95% confidence level, the gravitational inverse-square law holds (jαj ≤ 1) down to a length scale
λ ¼ 59 μm. This work establishes the strongest bound on the magnitude α of Yukawa-type deviations from
Newtonian gravity in the range of 70–300 μm, and improves the previous bounds by up to a factor of 2 at
the length scale λ ≈ 160 μm.
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The four known fundamental forces in nature, gravity,
electromagnetic interaction, weak, and strong inter-
actions, are described by general relativity and the
standard model, respectively. However, these two theories
appear to be fundamentally incompatible. To connect
gravity to the rest of physics, two of the most serious
problems still exist: the hierarchy problem [1,2] and the
cosmological constant problem [3–5]. Based on the ideas
of string theory or M theory, a number of speculations
have been proposed and predict a deviation from the
gravitational inverse-square law (ISL) in a short-range
regime [1–9]. Comprehensive reviews of such theories
and predictions can be found in Ref. [8]. The deviations
from the ISL are usually parametrized according to a
Yukawa potential,

VðrÞ ¼ −G
m1m2

r
ð1þ αe−r=λÞ; ð1Þ

where G is the Newtonian gravitational constant, α is the
strength of any new interaction with a length scale of λ,
and r is the separation between two masses. Motivated by
these considerations, a large amount of experiments have
been performed in the short range [10–24]. In this Letter
we report a new test of the ISL using a torsion pendulum
with separations down to 295 μm.
In torsion pendulum experiments for detecting the

short-range ISL violation, the most straightforward way
is to measure the variation of the force between two plane
masses as their separation is modulated periodically. This
method, as used in our previous experiments [23,24], has
high sensitivity due to the fact that the total force is along
the most sensitive direction of the pendulum, but its major

disadvantage is that the signal frequency is identical to the
drive frequency. An alternative method that separates the
signal and disturbance frequencies was employed by
the Eöt-Wash group [10], but the signal strength is
reduced because only the transverse force is in the most
sensitive direction. In our new design, the attractor is
improved to be eightfold azimuthal symmetric, and rotates
about a horizontal axis, as shown in Fig. 1. This design
puts the signal frequency at the 8th harmonic of the
rotation, far from the fundamental disturbance frequency,
but allows the total Yukawa force to be detected in the
most sensitive direction of the torsion pendulum.
An upgraded I-shaped pendulum with a mass of

59.693 g, is suspended facing to the eightfold attractor
by a 70-cm-long, 25-μm-diameter tungsten fiber, as shown
in Fig. 2(a). The middle part of the pendulum is a 61.491 ×
8.000 × 12.000 mm3 (x-y-z) glass block, on each end of
which two 14.630 × 19.756 × 27.138 mm3 glass bases
(G1, G2) is attached symmetrically to make the test
mass and the compensation mass protrude. Two 14.610 ×
0.200 × 12.003 mm3 tungsten test masses (Wt1, Wt2) are
first glued on two equal-area glass substrates (Gt1, Gt2)
with a thickness of 0.486 mm, then the two substrates are
glued on the higher part of the surface of the G1 and G2,
respectively. On the lower part of the G1 and G2, two
14.610 × 0.289 × 12.003 mm3 gravitational compensation
pieces (Wtc1, Wtc2) are adhered below each test mass,
which are used to cancel the change of the Newtonian
force. A special glass clamp is attached on top of the middle
glass block to guide the suspended fiber to the center of the
pendulum with an uncertainty of 5 and 6 μm in the x and y
directions, respectively.
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The attractor consists of 8 tungsten source masses
(Wsi, i ¼ 1; 2;…8, similarly hereinafter) and 8 tungsten
compensation masses (Wci) that are arrayed alternatively
on a 100-mm-diameter, 3-mm-thick glass disk. The
centers of the 16 masses rests periodically on a
38.80-mm-radius circle. Each source mass, with dimen-
sions 17.597 × 0.200 × 11.403 mm3, is first adhered to a
0.420-mm-thick glass substrate (Gsi) with the same area,
then the 8 substrates are glued to the glass disk with
eightfold azimuth symmetry. Similarly, eight 17.597 ×
0.219 × 11.403 mm3 compensation masses are glued on
the disk alternately. To keep the surface of the attractor at
the same level, eight equal-area but 0.395-mm-thick glass
substrates (Gci) are used to cover each Wci. All assembly
processes were guided by an optical image measuring
instrument. The position and the azimuth are aligned
within 20 μm and 1 mrad in accuracy, respectively.
At separation of 295 μm, the Newtonian torque between

one test mass and one source mass is ∼1.5 × 10−14 N · m,
about 3000 times larger than the expected sensitivity.
Therefore, if we want to keep the change of the
Newtonian torque below the sensitivity, the uncertainty of
the thickness of the masses should be less than 0.1 μm,
which is very difficult to achieve in fabrication. The problem
was solved by adding compensation masses on both the
pendulum and the attractor (we name it “dual compensa-
tion”); thus, a “null” experiment design was realized.
The change of the Newtonian torque is cancelled to be
< 1.5 × 10−17 N · m at the 8th harmonic with a larger span
of the separation (from ∼100 μm to several mm). However,
because both the compensation masses on the pendulum and
the attractor are about 0.4 mm back inside with respect to the
test masses and the source masses, respectively, the expected
change of the Yukawa torque should not be suppressed
due to the faster decay of this force with separation, as shown
in Fig. 2(b). The dual compensation design reduces the
accuracy requirements of the geometric dimensions and the
alignment about 10 times.
To realize a null experiment, all the components were

elaborately ground, polished, and assembled as described
in Refs. [23,24]. As shown in Fig. 1, the attractor disk,
adhered to an aluminum shaft with a precise bearing, and
the alignment glass block are all mounted on the same
platform of the 6-degree-of-freedom stage. The relative
positions between the alignment glass, the attractor, and
the shaft (rotation axis) were measured by a coordinate
measuring machine during the assembly. By moving the
alignment glass to touch the pendulum in the vacuum
chamber, the attractor rotation axis was aligned with the
center of the pendulum within 4 and 7 μm in the x and z
directions, respectively. Similarly, the error of the separa-
tion between the pendulum and the attractor (in the y
direction) was measured to be less than 6 μm. The attractor
disk was rotated at a uniform velocity ωd. The attitude of
the attractor was monitored by an autocollimator and

adjusted to be parallel to the pendulum within 42 μrad.
The run-out and the wobble of the attractor were deter-
mined using an infrared optical instrument [25] and an
autocollimator to be less than 4.5 nm and 0.25 μrad at 8ωd,
respectively. The initial azimuthal angle of the attractor
relative to the pendulum was adjusted within 0.5° uncer-
tainty, which keeps the expected Yukawa signal in phase
with sinð8ωdtÞ. After considering all the errors, the 8ωd

Newtonian torque at the separation of 295 μm was calcu-
lated to be τNi ¼ ð0.7� 0.5Þ × 10−17 N · m for the in-
phase component, and τNq ¼ ð−0.1� 0.5Þ × 10−17 N · m
for the quadrature one [as shown in Fig. 2(b)]. The main
errors of the Newtonian torque at 8ωd are shown in Table I.
Similarly, the uncertainty of the Yukawa torque that caused
by the geometric parameters is estimated by numerical
integration with different α and λ, which is ≤ 8% with
70 ≤ λ ≤ 300 μm, and has been combined in the constraint
on the Yukawa violation.
Three procedures were used to minimize the electrostatic

force between the pendulum and the attractor. (i) The
pendulum and the attractor were all gold coated and
grounded. An additional 10-μm-thick BeCu foil covered
the attractor’s surface to make the charge distribution
uniform. (ii) Facing to the test masses, two tightly stretched
30-μm-thick BeCu conducting membranes were inserted
between the pendulum and the attractor to prevent direct
electrostatic coupling. (iii) The potential differences
between the pendulum and the two membranes were
determined and compensated individually for each data
run, as described in Ref. [23].

FIG. 1. Schematic drawing of the experimental setup (not to
scale). The attractor and the alignment glass are mounted on a
6-degree-of-freedom stage (not shown here). A rotary stage
outside the vacuum chamber is used to rotate the attractor
through a feedthrough. The pendulum twist is measured by an
autocollimator, and controlled by two differential capacitive
actuators. The sensitivity of the pendulum is calibrated synchro-
nously by rotating a copper cylinder outside the vacuum chamber.
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The entire system was installed inside a vacuum chamber
maintained at a pressure of approximately 10−5 Pa by an ion
pump. During short range force detection, the pendulum-
membrane separation is set to ∼200 μm. A proportional-
integral-differential electrostatic feedback system [23] was
used to keep the pendulum at a fixed position. The sensitivity

of the closed-loop pendulum was calibrated synchronously
by a 1140 g copper cylinder rotating at a frequency of
ωcð¼ 15.7079 mrad=sÞ. The amplitude of the calibration
signal was first determined in the free oscillation mode of the
torsion pendulum with the pendulum-membrane separation
of ∼4 mm for negligible electrostatic disturbance. The
response of the torsion pendulum is θðωcÞ ¼ τðωcÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2ðω2
0 − ω2

cÞ2 þ ðIω2
0=QÞ2

p

, with the pendulum’s moment
of inertia I ¼ ð6.977� 0.002Þ × 10−5 kg m2, the free oscil-
lation frequency ω0 ¼ ð10.74� 0.04Þ mrad=s, and the
quality factor Q ∼ 2500. The twist of the pendulum at ωc
is θc ¼ ð71.3� 1.6Þ nrad, so the gravitational calibration
torque is accordingly determined as τc ¼ ð65.6� 2.1Þ×
10−17 N · m.
In the closed-loop system, the feedback voltages

U0 þ UðtÞ and U0 −UðtÞ are applied on two electrodes,
respectively, with U0 ¼ 5 V. The equation of motion of the
closed-loop torsion pendulum is

Iθ̈ þ kð1þ i=QÞθ − keθ ¼ τðtÞ − βUðtÞ; ð2Þ

where ke is the electrostatic coupling coefficient between
the pendulum and the membrane, τðtÞ is the total external
torque, and β is the ratio of the control torque to the
feedback voltage UðtÞ. UðtÞ is calculated as UðtÞ ¼
kpθ þ kd _θ þ ki

R

θdt, with kp ¼ 0.18 V=μrad, ki ¼
0.0001 V=ðμrad · s), and kd ¼ 9.0 V=ðμrad · s−1). The
measured torque τ at the frequency ω [denoted as τðωÞ]
is calculated according to the transfer function derived from
Eq. (2) as

HUðωÞ≡UðωÞ
τðωÞ ¼

UðωÞ
θðωÞ

θðωÞ
τðωÞ

¼
1=I

iωTFþ1
½kpþ ki

iωþ iωkd
iωTfþ1

�
ðω2

0−
ke
I −ω2Þþ iω

2
0

Q þ β=I
iωTFþ1

½kpþ ki
iωþ iωkd

iωTfþ1
�
;

ð3Þ
where TF ¼ 10 and Tf ¼ 4 s, are the time constants of the

lowpass filter of the θ and _θ. The parameters, ke ¼ð2�
6Þ×10−9 N·m=rad and β ¼ ð4.7� 0.3Þ × 10−13 N · m=V,
are deduced from the response of the feedback voltageUc on
the known gravitational calibration signal τc.
The rotating frequency ωd of the attractor was set to

1.63364 mrad=s, so that the interested signal frequency
ωsð¼ 8ωdÞ is at the low noise frequency band. Each data
set, including the outputs of the autocollimator, the feed-
back voltage UðtÞ, and five temperature sensors, were
recorded at a sampling rate of 1 Hz for about 5 days.
Between the data sets, the drift of the equilibrium position
of the pendulum was adjusted, and the potential differences
between the pendulum and the two membranes were
remeasured and compensated. The 8ωd feedback voltage
signal UðωsÞ is extracted by ð2=TÞ R T

0 UðtÞ cosðωstÞdt and

FIG. 2. (a) The front view of the bilateral symmetric pendulum
and the eightfold attractor. (b) The residual Newtonian torque τN
(dotted line) and the expected Yukawa torque τY (solid line),
which are calculated from the geometric parameters of the masses
with the separation of 295 μm. The Yukawa torque changes as a
sinusoidal curve with a frequency of 8ωd and an amplitude of
3.4 × 10−17 N · m (α ¼ 0.12, λ ¼ 0.1 mm are used according to
the previous bound [10]). The residual Newtonian torque varies
mainly at the fundamental frequency due to the eccentricity of the
attractor. From the Fourier transform, the 8ωd Newtonian torque
is ð0.7� 0.5Þ × 10−17 N · m (the in-phase) and ð−0.1� 0.5Þ ×
10−17 N · m (the quadrature), respectively.

TABLE I. Main error sources of the 8ωd Newtonian torques
(with 1σ).

Main error Measured δðΔτÞ
sources values (×10−17 N · m)

Pendulum 0.18
thickness of Wt 0.200 (1) mm 0.07 ×

ffiffiffi

2
p

Position z of Wt 7.580 (7) mm 0.04 ×
ffiffiffi

2
p

Thickness of Wtc 0.289 (1) mm 0.05 ×
ffiffiffi

2
p

Position z of Wtc −7.557 ð7Þ mm 0.04 ×
ffiffiffi

2
p

Adhesive 0.0009 (10) g 0.04 ×
ffiffiffi

6
p

Others 0.04
Attractor 0.13
Thickness of Ws 0.200 (1) mm 0.03 ×

ffiffiffi

8
p

Position y of Ws −0.527 ð2Þ mm 0.02 ×
ffiffiffi

8
p

Thickness of Wc 0.219 (1) mm 0.02 ×
ffiffiffi

8
p

Others 0.06
Alignments ≤ 7 μm and ≤ 42 μrad 0.09
Run-out ≤ 4.5 nm 0.34
Wobble ≤ 0.25 μrad 0.27
Initial phase ≤ 0.5° 0.05
Total a 0.50
aThis amplitude error is treated as both the in-phase and the
quadrature component errors, because the initial phases of the
run-out and wobble of the attractor disk were not determined
deliberately.
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ð2=TÞ R T
0 UðtÞ sinðωstÞdt, so does the calibration signal

UðωcÞ. According to Eq. (3), the measured torque τðωsÞ is
calculated as τðωsÞ¼ ½UðωsÞ=HUðωsÞ� ¼ ½UðωsÞ=UðωcÞ�
½HUðωcÞ=HUðωsÞ�τcðωcÞ; where jHUðωcÞ=HUðωsÞj ¼
1.043ð5Þ, and its error caused by ke and β are common
mode, so have been canceled greatly.
The typical power spectrum density (PSD) with and

without the rotation of the attractor are shown in
Figs. 3(a)–3(b). At the 295 μm separation, the ISL was
tested with a duration of about 80 days. After subtracting the
tiny residual Newtonian torque calculated above, the mea-
sured signal at 8ωd is shown in Fig. 3(c), and the in-phase
signal τi and the quadrature signal τq with 1σ error are

τi ¼ ð0.8� 0.3stat � 0.5systÞ × 10−17 N · m; ð4Þ

τq ¼ ð−1.0� 0.3stat � 0.5systÞ × 10−17 N · m; ð5Þ

where the first uncertainty is statistic, and the second is the
systematic uncertainty that mainly contributed by the
residual Newtonian torque errors. The result shows that at
the 2σ level the gravitational ISL still holds.
To distinguish the systematic effects from electrostatic or

other disturbances due to the shield membrane, two addi-
tional experiments with lager separations of 695 and
1095 μm were conducted. Each experiment lasted about
50 days. In the two additional experiments, the pendulum-
membrane separations were kept the same as that in the
295-μm-separation experiment, which ensures the disturb-
ance from the membrane identical, but the Yukawa effect is
negligible due to the larger separation. The comparison of
the torque PSDs of the pendulum at separations of 295 and
1095 μm is shown in Fig 3(b). After subtracting the slightly
increased Newtonian torque of ð1.3� 0.5Þ × 10−17 N · m,
the results are consistent with that of the 295-μm-separation
experiment at the 2σ level, shown in Figs. 3(c)–3(e). The
additional experiments indicate that the disturbance from
the shield membrane does not significantly increase the
error in the 295-μm-separation experiment.
Furthermore, several “non-null” experiments were per-

formed to verify the reliability. By deliberately shifting the
attractor and the pendulum along the x direction, the 8ωd
and 16ωd Newtonian torques are expected to increase
significantly. These characteristic signals allow us to
confirm that the instrument is performing properly.
Experiments with dx ¼ 0.250ð6Þ, 0.500(6), 0.750(6), and
1.000(6) mm were carried out. The results (shown in Fig. 4)
generally represent a consistency with the Newtonian
torques calculated with the measured geometric parame-
ters, which provide an additional check on the design and
installation of the whole experimental system.
Constraint on the Yukawa interaction at a 95% confidence

level is set by the in-phase signal τi of the 295-μm separation

FIG. 3. (a) The typical torque PSD of the pendulum with the
attractor at rest. It is closed to the thermal noise limit at ∼mHz,
but increased at higher frequency due to the readout noise.
(b) Comparison of the torque PSDs of the pendulum with the
attractor rotating at separations of 295 and 1095 μm. Both of
them have a similar structure in the full frequency range. No
significant signals appear at 8ωd. The obvious signals at 1ωd −
4ωd are caused by both the Newtonian torque and the disturbance
of the shield membrane, and the 15ωd and 17ωd signals are
Newtonian torques due to the imperfect assembly of the attractor.
(c)–(e) The measured torques at 8ωd at 295, 695, and 1095 μm
separations, respectively. Each solid dot represents a value
obtained from a 5-rotation-period data segment, and the squares
represent the mean values (shown in brackets) with 2σ error.

FIG. 4. Non-null experimental results of the 8ωd (upper) and
16ωd (lower) Newtonian torque. The shaded belt represents the
theoretical calculations, and the little squares are the measured
values, both with 2σ error. The 8ωd theoretical Newtonian torque
shows a smaller error bar compared with the 16ωd one due to
the dual compensation design. Inset: schematic drawing of the
displacement of the attractor with respect to the pendulum.
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experiment as 2×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0.82þ0.32þ0.52
p

¼ 2.0×10−17 N·m.
This result sets the strongest bound on α in the range of
70–300 μm, as shown in Fig. 5. At the length of
λ ≈ 160 μm, we improve the previous bounds by up to a
factor of 2, and the inverse-square law holds (jαj ≤ 1) down
to a length scale λ ¼ 59 μm. For the two large extra-
dimension scenarios with α ¼ 16=3 [8], the experiment
requires the unification mass M� ≥ 2.8 TeV=c2 with the
size R� ≤ 47 μm, agreeing with our previous result [23].
The main limit of the present sensitivity is the disturbance of
the vibration of the shield membrane, which also restricts the
minimal accessible separation.
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