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The relation between entanglement and nonlocality is discussed in the case of multipartite quantum
systems. We show that, for any number of parties, there exist genuinely multipartite entangled states that
admit a fully local hidden variable model, i.e., where all parties are separated. Hence, although these states
exhibit the strongest form of multipartite entanglement, they cannot lead to Bell inequality violation
considering general nonsequential local measurements. Then, we show that the nonlocality of these states
can nevertheless be activated using sequences of local measurements, thus revealing genuine multipartite
hidden nonlocality.
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The relation between quantum entanglement and
nonlocality has been studied extensively in recent years;
see, e.g., Refs. [1,2]. While both notions turn out to be
equivalent for pure states [3,4], the case of a mixed state is
still not understood. This is nevertheless desirable given
the importance of entanglement and nonlocality from the
point of view of the foundations of quantum theory and for
quantum information processing [1].
This research was initiated by Werner [5], who presented

a class of bipartite entangled states admitting a local hidden
variable (LHV) model. This proved that the correlations
obtained by performing arbitrary local projective measure-
ments on such states can be perfectly simulated by a
LHV model, hence using only classical resources. This was
later extended to general nonsequential measurements, i.e.,
positive operator valued measures (POVMs) [6]. Since such
states cannot lead to Bell inequality violation [7], they are
referred to as “local” entangled states [8].
It turns out, however, that certain local entangled states

can nevertheless lead to nonlocality when a sequence of
local measurements is performed [9]. That is, the use of
local filters can help to reveal (or activate) the nonlocality
of the entangled state. This phenomenon, termed “hidden
nonlocality,” occurs even for entangled states admitting a
LHV model for POVMs [10]. Other works showed that
the nonlocality of local entangled states can be activated
by performing joint measurements on several copies of the
state [11–13], or by placing many copies of the state in a
quantum network [14,15].
Whereas the above questions have been intensively

discussed for bipartite states, the relation between entan-
glement and nonlocality for multipartite systems is almost
unexplored thus far. Here, one should nevertheless expect
interesting and novel phenomenona, due to the rich
structure of multipartite entanglement. In particular, there
is a hierarchy of different forms of entanglement in
multipartite systems, the strongest of which is genuine

multipartite entanglement (GME). Similarly, the notion
of genuine multipartite nonlocality (GMNL) has been
discussed [16–18], which represents the strongest form
of nonlocality for multipartite systems. A first natural
question is then whether there exist GME states, the
correlations of which can be simulated by a LHV model.
This was first discussed by Tóth and Acín [19], who
presented a GME state of 3 qubits admitting a LHV model,
but could not extend their construction to more parties.
More recently, Augusiak et al. [20] showed the existence of
GME states of any number of parties that cannot lead to
GMNL. Specifically, the authors discussed a class of GME
states of N parties, and constructed a LHV model in which
the parties are separated into two groups. However,
this model is essentially bipartite, as the N parties cannot
be completely separated. Beyond these few exploratory
works, nothing is known. to the best of our knowledge.
Here we report progress in understanding the relation

between GME and nonlocality. First, we present a general
technique for constructing multipartite entangled states
admitting a fully LHV model, i.e., where all parties are
separated. This allows us to show that there exist GME states
of an arbitrary number of systems, which admit a fully LHV
model for arbitrary POVM measurements. Moreover, we
show that the nonlocality of these states can be activated
using sequential measurements. Notably, the use of local
filters allows us to obtain GMNL. To summarize, there exist
multipartite states, entangled in the strongest possible sense,
that do not exhibit even the weakest form of nonlocality
when considering nonsequential measurements. However,
when using sequences of measurements, the strongest form
of multipartite nonlocality can be obtained. We conclude
with a series of open questions.
Genuine multipartite entanglement.—Consider N parties

sharing a multipartite quantum state ρ acting on
H1 ⊗ � � � ⊗ HN , where Hi is the local Hilbert space of
party i. Denote by ðb; b̄Þ ∈ B a bipartition of the N parties.

PRL 116, 130401 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 APRIL 2016

0031-9007=16=116(13)=130401(5) 130401-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.116.130401
http://dx.doi.org/10.1103/PhysRevLett.116.130401
http://dx.doi.org/10.1103/PhysRevLett.116.130401
http://dx.doi.org/10.1103/PhysRevLett.116.130401


If ρ can be decomposed as a mixture of states that are each
separable on some bipartition of the Hilbert space, then we
have

ρ ¼
X

ðb;b̄Þ∈B
pb

�X
j

qbj jΦjihΦjjb ⊗ jΦjihΦjjb̄
�
; ð1Þ

with
P

bpb ¼
P

jq
b
j ¼ 1, and jΦjihΦjjb acts on the Hilbert

space specified by the partition b (and similarly for
jΦjihΦjjb̄). If ρ does not admit such a decomposition, then
it is GME. Such states can thus not be created via local
operations and classical communication (LOCC) using
only biseparable states.
Determining whether a given state is GME is challeng-

ing, as one must search over all possible decompositions
[Eq. (1)]. However, there are sufficient conditions for
an N-qubit state to be GME [21–23] (see also
Ref. [24]). Write the state ρ in the canonical basis
j0; 0;…; 0i; j0; 0;…; 1i;…; j1; 1;…; 1i as

ρ ¼

0
BBBBBBBBBBBBBBBB@

c1 z1
c2 z2

. .
.

⋰
cn zn
z�n dn

⋰ . .
.

z�2 d2
z�1 d1

1
CCCCCCCCCCCCCCCCA

ð2Þ

(we only write the elements of interest), where n ¼ 2N−1.
Then ρ is GME if

CðρÞ ¼ 2max
i
fjzij − wig > 0; ð3Þ

where wi ¼
P

n
j≠i

ffiffiffiffiffiffiffiffiffi
cjdj

p
. Below, we will use this condition

to ensure that a state is GME. Note that the value of CðρÞ
can also be used to quantify GME [25], an aspect that,
however, will not be discussed here.
Nonlocality.—Consider again the state ρ, where now each

party canmakemeasurements labeled xi obtaining outcomes
ai, specified by the measurement operators Maijxi , with
Maijxi ≥ 0 and

P
aiMaijxi ¼ 1. The probability to see the

outputsa ¼ ða1;…; aNÞ given the inputsx ¼ ðx1;…; xNÞ is
given by

pðajxÞ ¼ Tr½ρð⊗N
i¼1 MaijxiÞ�: ð4Þ

The state ρ is called (fully) local if, for all possible
measurement operators Maijxi , the statistics pðajxÞ can be
reproduced by a LHV model:

pðajxÞ ¼
Z
λ
qλpλða1jx1Þpλða2jx2Þ � � �pλðaN jxNÞdλ; ð5Þ

where qλ is a probability density over the shared variable λ
and pλðaijxiÞ are probability distributions, called local

response functions. Likewise, if Eq. (5) cannot be satisfied,
then the state is said to be nonlocal, as witnessed by the
violation of (some) Bell inequality.
One may also consider a weaker notion of locality,

whereby the correlations are not demanded to be local with
respect to all parties [as in Eq. (5)], but instead to be
(mixtures of) correlations that are each local across some
bipartition. Again denoting by ðb; b̄Þ ∈ B a bipartition of
the parties, these correlations take the form

pðajxÞ ¼
X

ðb;b̄Þ∈B
pb

Z
λ
qbλpλðabjxbÞpλðab̄jxb̄Þdλ; ð6Þ

where ab, xb denote the inputs and outputs for the
bipartition b. Note that Eq. (5) implies Eq. (6), but not
necessarily the converse. Correlations that cannot be
written in the above form are called genuinely multipartite
nonlocal and represent the strongest form of multipartite
nonlocality [16]. Here, for simplicity, we put no restrictions
on the probability distributions pλðabjxbÞ, pλðab̄jxb̄Þ
other than positivity and normalization (for example,
they may be signaling); note that more sophisticated
definitions of GMNL were proposed [17,18]. The N-party
Greenberger–Horne–Zeilinger (GHZ) state, jGHZi ¼
ðj0i⊗N þ j1i⊗NÞ= ffiffiffi

2
p

, is known to produce correlations
that are GMNL, as proven by the violation of the Svetlichny
inequalities [16,27,28].
GME and nonlocality.—The link between GME and

nonlocality is almost unexplored thus far. For N ¼ 3, Tóth
and Acín constructed a genuine tripartite entangled state
admitting a fully LHV model [i.e., of the form Eq. (5)]
for arbitrary local projective measurements [19]. Recently,
Augusiak et al. [20] presented GME states of N qubits
which cannot lead to GMNL. More precisely, they con-
structed a LHV model for some bipartition of N qubits, i.e.,
of the form Eq. (6). However, it is still unknown if there
exist GME states that admit LHV models that are fully
local, i.e., that satisfy Eq. (5), for any possible measure-
ments. This is what we show in the next section.
Method.—Our main tool is a simple method to construct

entangled N-party states which admit a LHV model.
Specifically, we start by considering a bipartite entangled
state ρwhich is “unsteerable,” that is, which cannot be used
to demonstrate steering. Formally, this means that ρ admits
as so-called local hidden state (LHS) model [29]; hence, its
correlations can be decomposed as

pðabjxyÞ ¼ Tr½ρMajx ⊗ Mbjy�

¼
Z

qλpλðajxÞTr½σλMbjy�dλ; ð7Þ

where σλ is the local hidden state, distributed with density
qλ, and Bbjy denotes Bob’s measurement operator. Clearly,
an unsteerable state is local (with pðbjy; λÞ ¼ Tr½σλMbjy�),
while the opposite may not hold in general.
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Next, we combine several copies of ρ in a star-shaped
network (see Fig. 1). This allows one to construct a
multipartite entangled state admitting a fully local model.
Specifically, we have the following.
Lemma 1.—Let ρ be a quantum state acting on

HA1
⊗ HB1

. The state ρ⊗N therefore acts on
HA1

⊗ � � � ⊗ HAN
⊗ HB1

⊗ � � � ⊗ HBN
¼ HA ⊗ HB.

Furthermore, let ΛB be a completely positive linear map
acting onHB. If ρ is unsteerable from A1 to B1, i.e., admits
a decomposition [Eq. (7)], then the N-party state,

ρA1���AN
¼ TrB½1A ⊗ ΛBðρ⊗NÞ�

Tr½1A ⊗ ΛBðρ⊗NÞ� ; ð8Þ

admits a local hidden variable model, of the form Eq. (5),
on the N-partition A1=A2= � � � =AN−1=AN .
The intuition behind the above lemma is given in Fig. 1.

A complete proof is given in Appendix A in Supplemental
Material [30].
Note that we have not specified the class of local

measurements for which the LHV model is valid in the
above lemma. If ρ has a LHS model for projective
measurements, then ρA1���AN

will have a LHV model for
projective measurements, and similarly for POVMs. Note
also that one can generalize slightly the result of Lemma 1
(see Appendix A in Supplemental Material [30]).
Specifically, one can use different unsteerable states in
each arm of the star-shaped network rather than the same
state N times, and one can choose not to perform the trace
over B and keep the center party.
GME states with fully local model.—We now use

Lemma 1 to construct N-qubit states which admit a fully
local model. We then prove these states to be GME for all
N. Specifically, consider the class of two-qubit states,

ρα;θ ¼ αjψθihψθj þ ð1 − αÞρθA ⊗
1
2
; ð9Þ

where 0≤ α≤ 1, 0≤ θ≤ π=4, jψθi ¼ cos θj00i þ sin θj11i,
and ρθA ¼ TrBjψθihψθj. These states are entangled for all
θ ∈�0; π=4�, if α > 1=3. Furthermore, they are unsteerable
from Alice to Bob for arbitrary projective measurements if
the relation

cos2ð2θÞ ≥ 2α − 1

ð2 − αÞα3 ð10Þ

holds [31]. Hence, for any 0 ≤ α < 1, one may find a
corresponding θ > 0 such that ρα;θ is unsteerable. We now
define the completely positive linear map,

ΛBðσÞ ¼ FBσF
†
B; FB ¼ j0i½h0;0;…; 0j þ h1; 1;…; 1j�;

which projects the systems of B1…BN onto an N-qubit
GHZ state. We may now define the N-party state ρA1���AN

by using ρα;θ and ΛB in Eq. (8). In Appendix B in
Supplemental Material [30] we show that the concurrence
of this state for a fixed N, α, θ is given by

CðρA1���AN
Þ ¼

2sinNð2θÞ
�
αN þ

h
1þα
2

i
N þ

h
1−α
2

i
N
− 1

�

½1þ α cos 2θ�N þ ½1 − α cos 2θ�N :

ð11Þ

It follows that for any N, one can find parameters α, θ such
that (i) condition (10) is satisfied (ensuring that ρα;θ has a
LHS model) and (ii) CðρA1���AN

Þ > 0, proving that ρA1���AN
is

GME. To give a specific example, take α ¼ 1 − 1=N2 and
θ > 0, such that Eq. (10) is saturated. One sees that the
denominator of Eq. (11) and sinN 2θ are both positive. We
therefore need

(a) (b)

FIG. 1. Construction of multipartite states admitting a fully local model. (a) Construction of the state. First, placeN copies of a bipartite
state ρ in a star-shaped network. Then, apply a map ΛB at the central node (i.e., on parties B1…BN), and trace out these parties. We thus
obtain anN-partite state, ρA1���AN

(represented by the bluewiggly line), shared by partiesA1…AN . (b) LHVmodel. If ρ admits a LHSmodel,
one can simulate the correlations of the star-shaped network for ρ⊗N, whereby the central node receives the hidden states σλi independently
from each source and the parties Ai receive hidden variables λi. One may now correlate the individual λi’s by having the map ΛB act on

the hidden states; i.e., we can define a new distribution over ~λ ¼ ðλ1;…; λNÞ that depends on Tr½ΛBð⊗i σλiÞ�. If each party Ai uses the
same response function as in the LHS model for ρ, then the resulting statistics on parties A1…AN simulate exactly the state ρA1���AN

.
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αN þ
�
1þ α

2

�
N
þ
�
1 − α

2

�
N
> 1 ð12Þ

to be positive for all N ≥ 2. For the case N ¼ 2, one has
α ¼ 3=4 and we find 43=32 > 1. For N > 2, upon sub-
stituting α ¼ 1 − 1=N2 the left-hand side becomes

�
1 −

1

N2

�
N
þ
�
1 −

1

2N2

�
N
þ
�

1

2N2

�
N

> 2

�
1 −

1

N2

�
N
> 2

�
1 −

1

N

�
> 1; ð13Þ

where for the first inequality we use the fact that
½1 − 1=N2�N < ½1 − 1=2N2�N and ½1=2N2�N > 0, and the
second inequality follows from Bernoulli’s inequality.
Extension to general measurements.—A natural question

is now to find a GME state with a fully local model,
considering general POVMs. While the states ρα;θ are not
known to admit a LHS model for POVMs, we can
nevertheless proceed differently. Starting from ρA1���AN

,
we can in fact construct another state, ρGME, which is both
GME and local for POVM measurements.
Specifically, define ρA1���Ak

¼ TrAkþ1���AN
½ρA1���AN

� and
denote by↺½ρ� the unnormalized and symmetrized version
of ρ. Then the state

ρGME ¼ 1

2N

�
ρA1���AN

þ
XN−1

j¼0

↺½ρA1���Aj
⊗ j2ih2j⊗N−j�

�
ð14Þ

admits a fully local model, for arbitrary local POVMs. Note
that j2ih2j denotes the projector onto a subspace orthogonal
to the qubit subpace. The above follows from a straightfor-
ward extension of Protocol 2 of Ref. [10] to the case of N
parties.
To conclude, we have to show that the state is GME.

Note that if each party makes a local projection on the qubit
subspace j0ih0j þ j1ih1j, then the resulting (renormalized)
state is ρA1���AN

, which is GME. Since one cannot create
GME using stochastic local operations, it follows that ρGME
is GME.
Hidden genuine multipartite nonlocality.—We showed

that GME states can admit a fully LHV model for arbitrary
nonsequential measurements. A natural question now is
whether these states have hidden nonlocality [9], that is,
whether nonlocality could be revealed via sequences of
measurements. A sufficient condition for the existence of
hidden nonlocality is the possibility of transforming the
initial state using local stochastic operations, i.e., local
filters, to another state that violates some Bell inequality
(see, e.g., Ref. [32]). Below, we will see that the states ρGME
have genuine multipartite hidden nonlocality. Furthermore,
the activation of nonlocality is maximal, in the sense that
the filtered state exhibits GMNL, despite the initial state
being fully local.
Consider N parties sharing ρGME. Let each party perform

a local filtering operation given by

Gϵ ¼ ϵj0ih0j þ j1ih1j; ð15Þ

hence transforming ρGME to the state

ρϵ ¼
G⊗N

ϵ ρGMEG⊗N
ϵ

Tr½G⊗N
ϵ ρGMEG⊗N

ϵ � : ð16Þ

In Appendix C of Supplemental Material [30] we prove
that for ϵ ¼ tan θ [where θ is the parameter in Eq. (9)]
the filtered state is essentially a pure N-party GHZ state
½j0i⊗N þ j1i⊗N �= ffiffiffi

2
p

. Specifically, the fidelity between the
two states is given by

F ðρϵ; jGHZihGHZjÞ ¼ hGHZjρϵjGHZi

¼ 1

2

�
αN þ

�
1þ α

2

�
N
þ
�
1 − α

2

�
N
�
;

ð17Þ
which tends to 1 when α is sufficiently close to 1. Since the
GHZ state is known to exhibit GMNL for any N, in
particular, via violation of the Svetlichny inequalities
[27,28] (which are robust to noise), it follows that ρϵ
can also be made GMNL.
Conclusion.—We showed that GME states can admit a

fully LHV model, for any number of parties. Thus, while
exhibiting the strongest form of multipartite entanglement
(GME), these states can never lead to any Bell inequality
violation, considering general nonsequential measurements.
This can be viewed as a maximal inequivalence between
multipartite entanglement and nonlocality. Interestingly,
this gap can disappear when sequential measurements are
considered, and the strongest form of nonlocality can be
activated, thus highlighting the relevance of sequential
measurements in multipartite nonlocality.
In the future, it would be interesting to investigate the

above questions in quantitative terms. For instance, could
one find examples of highly entangled GME states admitting
a LHVmodel? In order to do so, one should choose a specific
measure of GME [24] (as there exist no unique measure).
Also, the method we presented for constructing multi-

partite local entangled states could be further explored.
Firstly, one could start from different bipartite unsteerable
states; see, e.g., Refs. [33,34]. Secondly, by keeping the
central node in the network, one can construct multipartite
LHS models where one of the parties has a quantum
response function, and hence may prove useful in the study
of multipartite steering [35].
Finally, one could ask if there exist GME states admitting

LHV models for sequential measurements, although this
question is in fact still open even in the bipartite case.
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