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Adaptive social structures are known to promote the evolution of cooperation. However, up to now
the characterization of the collective, population-wide dynamics resulting from the self-organization of
individual strategies on a coevolving, adaptive network has remained unfeasible. Here we establish a
(reversible) link between individual (micro)behavior and collective (macro)behavior for coevolutionary
processes. We demonstrate that an adaptive network transforms a two-person social dilemma locally faced
by individuals into a collective dynamics that resembles that associated with an N-person coordination
game, whose characterization depends sensitively on the relative time scales between the entangled
behavioral and network evolutions. In particular, we show that the faster the relative rate of adaptation of
the network, the smaller the critical fraction of cooperators required for cooperation to prevail, thus
establishing a direct link between network adaptation and the evolution of cooperation. The framework
developed here is general and may be readily applied to other dynamical processes occurring on adaptive
networks, notably, the spreading of contagious diseases or the diffusion of innovations.
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Complex networks provide a powerful representation of
the underlying web of social ties that interconnect indi-
viduals in a given community or population [1–5]. As time
unfolds, individuals may adjust their behaviors (or their
social ties), which typically induces changes in the social
network they are embedded in (or in their individual
behavior). It is thus no surprise that the heterogeneous
structures we often find in empirical analyses result from
the interplay between at least these two coevolving mech-
anisms. Naturally, one expects the emerging features of a
complex network to depend on the nature of the inter-
actions between peers. For instance, if what is at stake is the
spreading of a disease, healthy individuals ought to break
(secure) the links with infected (healthy) individuals,
provided they know they are (not) infected [6–8], whereas
social dilemmas of cooperation [3,9–11] by considering
individuals with different preferences (regarding the main-
tenance of interactions) often lead to more complex
decision processes. The time dependence of both social
structure and individuals’ choices can be conveniently
described by means of a coevolutionary process [3,4,11]
where individual behavior is allowed to evolve at par with
the structure of the underlying social network [11]. The
latter implies that links are possibly rewired depending
on whether individuals are satisfied or not with a given
interaction. A simple implementation of such a model [11]
—see below for details and Ref. [12] for related approaches
—accounts for many of the stylized facts one expects to
happen when social behavior and social structure coevolve
[13]: adaptation of individual preferences and behaviors,

together with resolution of conflicts of interest reflecting
the process at stake. In particular, as detailed below, when
conflicts of interest are described by the paradigmatic
prisoner’s dilemma (PD) of cooperation—which from a
rational point of view would lead to widespread defection
—network adaptation favors cooperation at a population-
wide level. Consequently, and despite the fact that, locally,
every individual engages in a PD game, globally, the game
being played must be a different one.
But which one? Of which type? With which features?

These questions remain open and are of fundamental
importance given that, often, all we can gather empirically
(e.g., from populations of microbes to human societies
[14]) are time-series data of aggregate information, without
direct information on individual behavior. An intuitive
example of our empirical constraints regards epidemic
outbreaks: What one often collects is aggregate statistical
information of the community as a whole, instead of
individual information that may allow practitioners to infer
directly from the data the characteristics of the, say, virus
infectiousness [7]. Thus, and similar to many other areas
of physics, it becomes ubiquitous to establish a (reversible)
link between individual and collective behavior in the
analysis of coevolutionary processes.
In this Letter, we develop a novel framework able to

capture the nontrivial link between the nature of indi-
vidual (local) interactions and the population-wide (global)
dynamics observable in adaptive structures.
Figure 1 provides an overview of what is known to

date by means of computer simulations regarding the

PRL 116, 128702 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

25 MARCH 2016

0031-9007=16=116(12)=128702(5) 128702-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.116.128702
http://dx.doi.org/10.1103/PhysRevLett.116.128702
http://dx.doi.org/10.1103/PhysRevLett.116.128702
http://dx.doi.org/10.1103/PhysRevLett.116.128702


coevolution of cooperation and network topology [11],
when the social dilemma at stake is a PD. The relative time
scales of network adaptation and behavioral evolution are
controlled by the parameter τ: When τ ¼ 0, no network
adaptation occurs; when τ ¼ 1, no behavioral adaptation
occurs, which, as shown in Fig. 1, has a profound impact in
the emergence of cooperation. One starts from a homo-
geneous random network [15], where all individuals have
the same number of links, and let individual behavior and
network structure coevolve at variable rates. Individuals
engage in a PD in which mutual cooperation provides a
reward R ¼ 1, mutual defection a punishment P ¼ 0,
whereas when a C meets a D, the C gets a sucker’s payoff,
S ¼ −λ, while the D gets a temptation, T ¼ 1þ λ (λ ≥ 0
is the dilemma strength, such that increasing λ implies
a stronger attraction into a full-D configuration). Time
proceeds in discrete steps, with the coevolutionary process
allowing, in each step, for link rewiring with probability τ
and behavioral update with probability (1 − τ). Behavioral
update is modeled via the so-called pairwise comparison
rule [16], a birth-death process in which an individual i
with strategy si (here C or D) imitates a neighbor m with
(a different) strategy sm with probability given by the Fermi
distribution from statistical physics (where the inverse
temperature β provides here a measure of the strength of
natural selection): pi;m ¼ f1þ exp½−βðfm − fiÞ�g−1, with
fj accounting for the fitness of individual j, associated with
the payoff accumulated over all interactions with their
neighbors [16]. Network adaptation assumes that C’s (D’s)
seek for C’s to cooperate with (to exploit), while avoiding
connections with D’s: An individual is satisfied with all his
C neighbors, being dissatisfied with the remaining. Hence,
given a link between individuals A and B, if A is satisfied,

she will try to keep the link; if dissatisfied, she will try to
rewire the link to one of her second neighbors, accounting
for the myopic nature of individuals regarding the entire
social network. Following Ref. [11], when linked individ-
uals A and B have a conflict regarding rewiring, resolution
is fitness driven, the will of A prevailing with probability
σ ¼ f1þ exp½−βðfA − fBÞ�g−1. Different variants of this
model have been considered [12], leading to qualitatively
similar results. Naturally, the framework developed here is
applicable to different choices of link rewiring, as well as
to pairwise interactions of different nature, as discussed
below.
As is well known [10,17], in the mean-field approxi-

mation C’s are not evolutionary viable. But when inter-
actions proceed along the links of a social network, C’s do
not necessarily get extinct [3], even when no network
adaptation takes place (τ ¼ 0), as shown at the bottom
part of Fig. 1(a). Most importantly, network adaptation
paves the way for cooperation to prevail, even for game
parameters that would render cooperation unfeasible in
nonadaptive networks, as one can easily check by follow-
ing trajectories of constant λ in Fig. 1(a). The faster the
rate of network adaptation, the more C’s get an evolu-
tionary edge over D’s. Moreover, for τ > 0, our results
suggest that the adaptive nature of the network nicely
accounts for the heterogeneity observed in realistic social
networks [1,2], in which a minority of nodes has a much
larger degree than the majority. This is shown in Fig. 1(b),
where we plot the degree variance of the networks
emerging from coevolutionary simulations, as we move
along the critical line τðλÞ depicted in Fig. 1(a), high-
lighting also the tight interplay between behavioral and
network evolution.

(a) (b)

FIG. 1. Level of cooperation and network heterogeneity under coevolutionary dynamics. (a) We computed numerically the level of
cooperation in the domain bounded by 0.0 ≤ λ ≤ 1.0 and 0.0 ≤ τ ≤ 1.0. It is given by the average final fraction of cooperators after
5 × 103 generations (1 generation equals Z discrete strategy time steps, where Z is the population size) and averaged over 105

independent simulations starting from a configuration with equal abundance of strategies. Orange (blue) regions denote parameter
values for which cooperators (defectors) dominate. These two regions are separated by a narrow transition line, approximately given by
τðλÞ ≈ a − 1=ðbλ − 1Þ (solid black line, a ≈ 0.93, b ≈ 20). (b) Variance of the degree distribution of the equilibrium network as a
function of λ, obtained along the curve τðλÞ. Clearly, the stronger the social dilemma, the more heterogeneous the network becomes,
in this way allowing for cooperators to increase their chances of overturning defectors in the population. Furthermore, network
heterogeneity is most pronounced along the line τðλÞ marking the transition between full cooperation and full defection [11]. Other
parameters are β ¼ 10.0, Z ¼ 103, and average network connectivity hki ¼ 8.
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To shed light on the link between individual and collective
behavior, let us consider a network with Z nodes and L
(undirected) links, and let every pair of linked individuals
play a PD game of strength λ. Let us consider a large
ensemble (Ω) of coevolutionary time series, each of which
starts from an arbitrary fraction k=Z ofC’s placed at random
on the initial network, that we shall take to be a homogeneous
random network of degree hki [15,18]. For a given time t,
individual i, and coevolutionary simulation w, we compute
the quantity Ti;wðk; tÞ ¼ ð1=kiÞ

Pki
m¼1 pi;m½1 − δðsi; smÞ�

[δða; bÞ ¼ 1 if a ¼ b, and 0 otherwise], where pi;m stands
for the probability that individual i imitates neighbor m
(out of her ki neighbors). We use Ti;wðk; tÞ to compute the
(ensemble) average probability that, in each behavioral
update time step t, the number of C’s in the population
increases (þ) or decreases (−) by one individual:

T�ðk; tÞ ¼ 1

ZΩðkÞ
XΩðkÞ

w¼1

XDs;Cs

i¼1

Ti;wðk; tÞ: ð1Þ

In Eq. (1), ΩðkÞ [0 ≤ ΩðkÞ < Ω] is the number of times
that a population configuration containing k C’s was
observed at time t in the ensemble Ω of all simulations
performed. Equation (1) allows us to compute the (time-
dependent) drift term,

ΓAðk; tÞ ¼ Tþðk; tÞ − T−ðk; tÞ; ð2Þ
that constitutes a network-dependent analog of the gradient
of selection used in the analysis of the stochastic evolu-
tionary dynamics in finite well-mixed populations [16,17].
Thus, ΓAðk; tÞ provides population-wide information of the
coevolutionary dynamics, which now carries, nonetheless
(time-dependent mean-field) information on the adaptive
network structure. In the following, we shall rewrite
ΓAðk; tÞ in generation units (by performing a partial time
average over 1 generation, given by Z discrete behavioral

update steps) as ΓAðk; tgÞ ¼ ð1=ZÞPZtg
t¼Zðtg−1Þ Γ

Aðk; tÞ.
Figure 2 shows what happens at a population-wide scale

as a function of time tg in the coevolution of cooperation
and adaption. At tg ¼ 0, the whole population engages in a
PD game; this means that ΓAðk; 0Þ < 0 for any value of k.
At this stage, what is best for an individual is also true for
the population as a whole. As time unfolds, however, there
is typically a critical number of generations (gC) above
which we observe the emergence of two (finite population
analogues of) internal fixed points, that we denote by xL
and xR (shown in Fig. 2 for τ ¼ 0.4); systematically, xL has
the structure of a probability repeller (leading to co-
ordination dynamics, represented by open circles), whereas
xR has the structure of a probability attractor (coexistence
dynamics, solid circles). As Fig. 2 shows, xL and xR
separate from each other with time until they reach a stable
location associated with a stationary phase of ΓAðk; tgÞ.

Importantly, the emergence of xL and xR depends sensi-
tively on the value of τ: The larger the value of τ, the sooner
xL and xR emerge as a result of the coevolutionary process.
This is clearly shown in Fig. 2, where the order of
appearance of the pair (xL, xR) follows the values of τ
from top to bottom in the figure legend. Needless to say, the
sooner the emergence of the pair (xL,xR), the more likely
the self-organization among C’s and D’s will favor C’s to
fall into the basin of attraction of xR, which will dictate the
overall prevalence of cooperation. This, of course, reflects
the predominant scenario, which is valid in a stochastic
sense.
Solid lines in Fig. 2 display the evolution of C’s for

two representative coevolutionary time series, both starting
from a random configuration containing k ¼ Z=2 C’s.
Their color code uniquely identifies the rewiring proba-
bility τ (τ ¼ 0.25 for the orange line, lower curve, and
τ ¼ 0.35 for the brown line, upper curve). At the start, the
number of C’s tends to decrease, as one would expect
under a population-wide PD-like evolutionary dynamics.
However, this is a transient regime: As strategy correlations
build up at par with a coevolving network, we observe
the emergence of a new population-wide dynamics at gC,
where the pair (xL,xR) emerges into the dynamics. In this
new coevolutionary landscape, C’s are now able to succeed
provided x > xL. Failing to achieve that will lead to the
demise of cooperation. Both outcomes are illustrated in
Fig. 2. Indeed, while for τ ¼ 0.35 the transient state is
short enough (≈6 generations), thus allowing the fraction
of cooperators x to remain above the time-dependent
location of xL, for τ ¼ 0.25 the transient is so large
(≈20 generations) that by the time the pair (xL, xR) appears,
x is already below xL, compromising the viability of

FIG. 2. Global PD dynamics in adaptive networks. Evolution
of the internal fixed points of ΓAðk; tÞ for the different rewiring
probabilities τ indicated, from top to bottom (bottom to top), for
the coexistence (coordination) points. Solid lines display two
prototype time series that start at x ¼ k=Z ¼ 0.5, one coevolving
towards 100% D’s (τ ¼ 0.25) and the other coevolving towards
100% C’s (τ ¼ 0.35), this latter succeeding after crossing the
coordination threshold provided by ΓAðk; tgÞ. Other parameters
are λ ¼ 0.2, β ¼ 10.0, N ¼ 103, hki ¼ 4.
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cooperators in the population, as shown by the correspond-
ing solid line.
This analysis shows that, in adaptive networked pop-

ulations, there will be a critical value of τ above which
cooperation prevails (in a stochastic sense). This prevalence
is associated with the capacity of the population to over-
come the coordination barrier that emerges, at a population-
wide scale, out of the coevolutionary processes of strategy
and structure adaptation.
It is worth commenting on the significance and impact of

the emergence of the pair of internal equilibria (xL, xR). As
Fig. 2 suggests, this pair converges to the approximate
limits xL ≈ 0 and xR ≈ 1 as tg → ∞. This is, however,
highly unlikely: Strictly speaking, a single D in a pop-
ulation of Z − 1 C’s will always be advantageous, inde-
pendent of the underlying network structure, whereas a
single C in a population of Z − 1 D’s will always be
disadvantageous, and thus the pair (xL,xR) cannot converge
exactly to (0,1). Nevertheless, to the extent that xR emerges
at values higher than the actual fraction x of C’s present in
the population at that time, it will foster the increase of C’s
in the population, which in turn will promote an increase in
the value of xR. In this sense, the role of xL becomes more
important than that of xR in what concerns the viability of
cooperation.
It is further important to point out that work carried out in

the framework of N-person coordination games shows that
one of the most prominent features of the associated
evolutionary dynamics resides, precisely, in the emergence
of a pair (xL, xR) with exactly the same structure and nature
[17], in a wide region of the game parameter spectrum, a
feature that does not occur in two-person games, such as
the PD we started from. Thus, one may state that, globally,
two-person games on adaptive networks are transformed
into effective N-person coordination games. To make this
statement more explicit we change, in the following, the
social dilemma from a PD to a two-person coordination
game, of ubiquitous importance from philosophy to eco-
nomics and evolution [17], and which renders cooperation
feasible. Indeed, at a mean-field level, cooperation will
thrive provided there is a critical mass of cooperators to
begin with. In other words, we change the nature of the
pairwise interaction and, similarly to Fig. 2, we investigate
the global dynamics of the population. The results, shown
in Fig. 3, provide a scenario that is remarkably similar to
that obtained by means of a PD (although one needs smaller
adaptation rates in order for cooperation to prevail),
providing additional evidence of the unifying role one
obtains, at a global level, by studying the coevolution of
behavior and network structure.
Overall, both processes under consideration—strategy

evolution and structural evolution—contribute to a positive
assortment of C’s. Indeed, the strategy update process
leads to what can be qualitatively described as a C’s (D’s)
breed C’s (D’s) type dynamics. Yet, the complexity of the

underlying social dilemma leads to a symmetry break in the
outcome of the update process: Unlike C’s, whose success
reinforces their growth, D’s become victims of their own
success [3,19]. When coevolving at par with network
adaptation, this asymmetry is reinforced by a new sym-
metry break associated with links that connect two C’s and
links that have at least one D: the former are resilient to
adaptation, contrary to the latter, which will be resilient
only if D’s are much more fit than C’s. As our results
demonstrate, such asymmetry also contributes to an assort-
ment of C’s at the same time that it fosters the segregation
of D’s. The joint contribution of both processes facilitates
the emergence of cooperation, which becomes feasible in
the entire parameter range of the game as long as network
adaptation proceeds fast enough.
To conclude, a crucial issue of complex systems research

and, more recently, of computational social science, is to
understand how societies behave as a collective, knowing
beforehand how individuals interact with each other.
Conversely, if all we know is how societies behave
collectively (as happens all too often in microbiology),
is there anything we can say about how individuals interact
with each other? This Letter shows how to develop a
reversible link between individual and collective behavior.
We show how network adaptation changes the cooperation
dilemma, as it is locally perceived, into a coordination
problem at a global level, exhibiting an N-person co-
ordination structure impossible to anticipate from the two-
person interaction we started from. Interestingly, such a
coordination problem ultimately dictates the collective
dynamics and therefore each individual’s choices, even
if, locally, individual perception remains unchanged and
individuals cannot observe or even anticipate such global

FIG. 3. Global coordination dynamics in adaptive networks.
Evolution of the internal fixed points of ΓAðk; tÞ for the different
rewiring probabilities τ indicated, where we use the same notation
as in Fig. 2. Despite the different nature of the pairwise
interaction, one obtains here the emergence (at different times,
depending on τ) of a pair of (analogues of) fixed points, in full
analogy with Fig. 2. Other parameters are R ¼ 1, P ¼ 0, T ¼ 0.9,
S ¼ −0.25, β ¼ 10.0, N ¼ 103, hki ¼ 4.
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dynamics. The simplicity (and computational efficiency) of
the present implementation renders this framework readily
applicable to other time-dependent processes that occur on
adaptive networks [8,20].
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