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First-principles-based effective Hamiltonian simulations are used to reveal the hidden connection
between topological defects (hedgehogs and antihedgehogs) and relaxor behavior. Such defects are
discovered to predominantly lie at the border of polar nanoregions in both BaðZr0.5Ti0.5ÞO3 (BZT) and
PbðSc0.5Nb0.5ÞO3 (PSN) systems, and the temperature dependency of their density allows us to distinguish
between noncanonical (PSN) and canonical (BZT) relaxor behaviors (via the presence or absence of a
crossing of a percolation threshold). This density also possesses an inflection point at precisely the
temperature for which the dielectric response peaks. Moreover, hedgehogs and antihedgehogs are found to
be mobile excitations, and the dynamical nature of their annihilation is demonstrated (using simple
hydrodynamical arguments) to follows laws, such as those of Vogel-Fulcher and Arrhenius, that are
characteristic of dipolar relaxation kinetics of relaxor ferroelectrics.
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Relaxor materials form a class of disordered ferroelectrics
embodying an intriguing case of the effect of quenched
randomness on physical properties. A primary feature at the
origin of their anomalous and technologically prominent
properties is the emergence of inhomogeneous local order,
and especially intriguing is its ensuing complex relaxation
process [1–5]. It is commonly accepted that the confinement
of polar order to within randomly oriented nanoregions
is the result of the interplay between compositional disorder
and the underlying ferroelectric phase instability [2,3].
Deviations from mean-field expectations have been associ-
ated with the onset of an ergodic relaxor state below Td, the
so-called Burns temperature where local order first nucleates
[6]. On cooling, as the correlation length for dipolar
fluctuations increases, polar regions grow in size, and
depending on the kinetics of their development [7], ulti-
mately show either canonical or noncanonical behavior [2,3].
In noncanonical relaxors such as PbðSc0.5Nb0.5ÞO3 (PSN)
[7–9], polar regions percolate the whole sample and yield a
static, cooperative relaxor-to-ferroelectric spontaneous
phase transition at the Curie temperature, TC, while in
canonical relaxors such as BaðZr0.5Ti0.5ÞO3 (BZT) [10],
they exhibit a dynamic slowing-down of their fluctuations
that frustrates and impedes the development of long-range
order. The dielectric relaxation (prior to the spontaneous
phase transition in the case of PSN) characterizes the relaxor
behavior. Moreover, in the relaxor state, the system has an
average cubic symmetry. Interestingly, due to its wide
applicability to many relaxational phenomena exhibiting
cooperative behavior [2,11], the so-called Vogel-Fulcher
relation [12,13] is often empirically used to analyze relax-
ation kinetics in relaxors [2,3,11], although no microscopic
prescription has been firmly established for such a relation. It
is given by

τ ¼ τ∞ exp½U=kðT − T0Þ�; ð1Þ

where the reference temperature T0 can be interpreted as the
dipolar freezing temperature for the relaxation process, and
can beviewed as defining a transition froman ergodic relaxor
state to a nonergodic state [2].
In spite of abundant experimental investigations and

numerous theoretical formulations [14–21], the subject of
the relaxor behavior remains nonexhausted. In particular, a
criterion for discerning between canonical and noncanonical
behaviors is still lacking. One may also wonder whether a
connection (though presently unknown) between relaxor
behavior and topological defects [22,23] exists, especially
when realizing that somemodels proposed to explain relaxor
behavior are based on the existence of locally ordered polar
nanoregions embedded within a disordered matrix [2,3],
while point topological defects are known to occur wherever
the order changes discontinuously [24], thereby concentrat-
ing distortions and enabling the surrounding medium to be
locally ordered. Intuitively, invoking a topological analysis
for relaxor behavior therefore rests upon the characteristic
inhomogeneous local order. Since polar regions can locally
adopt different low-symmetry polar states, wherever incom-
patible choices of symmetry breaking arise singularities in
the dipolar order parameter vector field [22] can be expected
to spontaneously form, therefore resulting in the creation of
topological defects.
Finding such a hypothetical connection between relaxors

and topological defects will be of significant importance
since, owing to their ubiquitous nature, topological entities
such as hedgehogs (point defects in three dimensions) and
vortices (point defects in two dimensions) are now widely
recognized as constituting a major topic in several different
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areas of physics, including ferroelectrics [25]. They have
been studied and experimentally observed in various sys-
tems, ranging from cosmology [26–28] to liquid crystals
[29], and they often reveal a common logic among seemingly
unrelated systems and offer the possibility of dually recasting
the systems’ (thermo)dynamics in formulations solely based
on discrete sets of topological charges [30]. They are often
expected to form spontaneously in proximity to many
different types of phase transitions [31,32] and have been
of crucial relevance for understanding otherwise dormant
and unexplored properties such as those featured in super-
fluids, superconductors, liquid crystal, and crystals. Indeed,
many features of these systems, such as plastic deformation
of solids, the Kosterlitz-Thouless transition of the two-
dimensional XY model [33], the dislocation-unbinding
melting of solids [34], and the formation of colloidal crystals
in nematic liquid crystals, to cite but a few, are dictated by
their defects rather than by the properties of most of their
bulk. Adding relaxor ferroelectrics to that list of materials
thus stands as an exciting possibility.
In this Letter, we thus seek to isolate and exploit point

topological defects [22,23] in view of examining whether
such features correlate to the relaxor behavior, and whether
they shed new light on relaxors. We numerically access the
temperature evolution of the density ρ of topological point
singularities (hedgehogs and antihedgehogs) for BZT and
PSN, and identify the percolation threshold pc of defects as
a criterion for discriminating between canonical (BZT) and
noncanonical (PSN) relaxor behaviors. Furthermore, evi-
dence of the dynamical nature of topological defects
enables us to make use of a hydrodynamic description
involving a two-species diffusion-annihilation process
among hedgehogs and antihedgehogs; this yields, in turn,
the characteristic relaxation kinetics laws of relaxors.
Here, using first-principles-based effective Hamiltonians

[35–37], we numerically investigate the behavior of hedge-
hogs and antihedgehogs in BZT and PSN relaxor ferro-
electrics (see Supplemental Material [38] for a description
of the effective Hamiltonian methodological framework).
We consider random distribution of B-site cations for both
systems and perform Monte Carlo simulations on 12 ×
12 × 12 and 18 × 18 × 18 periodic supercells for
BaðZr0.5Ti0.5ÞO3 and PbðSc0.5Nb0.5ÞO3, respectively, using
at least 2 × 105 thermalization sweeps (note that PSN
exhibits much stronger random fields than BZT [35,36]
and that modeling such fields well requires the use of larger
supercells). The calculations begin at high temperature
from a cold start, and the temperature is then decreased in
small steps to get well-converged results. We note that
while the effective Hamiltonian employed to simulate the
properties of BZT [35] yields characteristic temperatures in
concordance with those experimentally reported (e.g., it
gives a Burns temperature of Td ∼ 450 K, agreeing
with the measured value given in Ref. [10]), the one
used to simulate the properties of PSN overestimates
characteristic temperatures (it yields a maximum of the

static dielectric response occurring at the temperature Tm ∼
950 Kwhile the reported experimental value is of 380K [7]).
Such discrepancy arises from the fact that the effective
Hamiltonian of PSN [36,37] does not incorporate oxygen
octahedral tiltings as degrees of freedom, which compete
against the formation of electrical dipoles (via a repulsive
biquadratric energy coupling these tiltings and dipoles [47]).
We thus decided to rescale the temperature by substracting
570 K for PSN. We also follow Refs. [48–50] in order to
assign a topological charge Q within each of the unit cells
composing the supercell. Within this procedure, Q is
guaranteed to be an integer and the net topological charge
(that is, the sum of the topological charges within the
supercell) is ensured to be zero as the considered systems
are defined with periodic boundary conditions. We numeri-
cally found that the magnitude of the nonzero topological
charges present in the investigated systems is almost
always equal to unity. A hedgehog carries a charge

FIG. 1. (a) Temperature evolution of the density ρ of point
topological defects (averaged over Monte Carlo sweeps) for BZT
and PSN. Solid lines correspond to exponential fits in the relaxor
range. Horizontal dashed line indicates the site percolation thresh-
old pc. Vertical dashed line indicates the temperature at which the
pc line intersects the defect density of PSN (∼380 K). (b) Sche-
matic illustration of point topological defects at atomic scale.
Yellow spheres correspond to B-sites to which local dipole mo-
ments (arrows) are allocated. The enclosed defect in the unit cell is
(b1) a hedgehog corresponding to a sourcelike dipolar pattern or
(b2) an antihedgehog corresponding to a sinklike dipolar pattern.
(c) Transverse cross sectional view of PSN supercell for
T ¼ 430 K showing the polar clusters (hatched regions) and the
location of defects (circles) projected on the plane.
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Q ¼ þ1 [Fig. 1(b1)] while an antihedgehog carries the
opposite charge, Q ¼ −1 [Fig. 1(b2)].
Let us now define the density ρ of topological defects as

the ratio of topologically defective cells (i.e., containing
hedgehogs or antihedgehogs) to the supercell volume.
Figure 1(a) shows the evolution of the thermal average
of ρ with temperature in both BZTand PSN. Moreover, and
in order to relate ρ to (macroscopic and microscopic)
properties of these two relaxor ferroelectrics, Fig. 2 reports
the temperature derivative dρ=dT of the defect density
along with the average diagonal component of the dielectric
susceptibility tensor χ ¼ ðχ11 þ χ22 þ χ33Þ=3, as a function
of temperature in both BZT and PSN. This latter tensor is
practically calculated as in Refs. [35,51,52].
Figure 2 also displays the evolution with temperature of

the Edwards-Anderson-like parameter qEA, which is com-
puted as qEA ¼ hhuii2sii, where the inner averaging is
performed on the s Monte Carlo sweeps while the outer
one is made over the i lattice sites [35]. It also shows the
temperature dependency of the specific heat C, which is
extracted from the supercell energy fluctuations,
kBT2C ¼ hE2i − hEi2, where hEi corresponds to the aver-
age over Monte Carlo sweeps of the internal energy E and
hE2i to that of its square, and where kB is the Boltzmann
constant. In case of BZT, qEA is found to increase with
decreasing temperature, thereby indicating the develop-
ment of local correlations and the establishment of a glassy

order upon cooling, in concordance with the experimentally
reported dipolar glass character of BZT [53], for which no
macroscopic order parameter (e.g., spontaneous polariza-
tion) exists down to the lowest temperature. On the other
hand, the lower panel of Fig. 2 shows that PSN becomes
ferroelectric, and thus loses its relaxor behavior below a
certain finite temperature, since its specific heat exhibits a
noticeable peak (the temperature at which C peaks is
known to be the Curie temperature, TC). The corresponding
results reveal that TC ∼ 360 K, while the maximum of the
static dielectric response χ occurs at a higher temperature
Tm ∼ 380 K in PSN, both in good agreement with exper-
imental values [8].
Figure 1(a) indicates that, in case of BZT, the density ρ is

found to decrease smoothly with decreasing temperature,
and is nonzero over the entire temperature range. Moreover
the upper panel of Fig. 2 reveals that the temperature at
which this density of topological defects inflects (that is,
the temperature at which dρ=dT is maximal) is ∼135 K in
BZT, which is precisely the temperature Tm at which its
dielectric response χ peaks [10]. The lower panel of Fig. 2
confirms the identity between the inflection of ρ and the Tm
temperature at which χ is maximal in PSN (which is about
380 K in this system, that is, about 20 K larger than its
Curie temperature). These observations in both BZT and
PSN therefore enable the interpretation of the defect
density inflection point as the temperature at which the
dielectric anomaly occurs in relaxor ferroelectrics. The
connection between topological defects and relaxor proper-
ties takes its root into the fact that, as shown in Fig. 1(c), the
spatial distribution of defects is such that they are mostly
positioned at the contact points between rugged interfaces
of differently ordered polar nanoregions (numerically
identified using the procedure of Ref. [54]), that is, at
the border of the objects believed to be responsible for
relaxor behavior [2], where local distortions of the polari-
zation vector field are at their utmost. For instance, we find
that for PSN at 430 K the fraction of the topological defects
that reside at the interfaces of polar nanoregions is of
∼89%. Interestingly, such point topological defects are
inherently associated with elastic deformations of cubic
symmetry [as one can guess from Fig. 1(b) and from the
known coupling between local dipoles and local strains],
which may explain the experimentally reported diffuse
scattering anisotropy [55].
Figure 1(a) further shows that, in contrast with BZT, ρ of

PSN significantly drops around Tm, and ultimately van-
ishes for lower temperatures. It is particularly striking to
realize that, in PSN, this Tm temperature coincides with the
intersection between the defect density ρ and the percola-
tion threshold pc (shown by the horizontal dashed line in
Fig. 1). More precisely, pc indicates the site percolation
threshold on a regular lattice with neighborhood extending
to the third-nearest neighbors [56], and corresponds to the
critical probability above which a cluster of topological

FIG. 2. Evolution with temperature of the Edwards-Anderson
parameter qEA (in arbitrary units), the specific heat C (in arbitrary
units), one third of the trace of the dielectric susceptibility tensor
χ (102), and the derivative dρ=dT of the defect density for BZT
(upper panel) and PSN (lower panel).
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defects spanning through the whole system appears. This
suggests that in the temperature region where ρ > pc, the
development of long-range order is hindered by percolating
clusters of topological defects, while for ρ < pc, the
density is such that long-range ferroelectric order is
achievable. In this regard, ρ dually provides information
about the evolution of local order. As a matter of fact, in
both PSN and BZT, the gradual lessening of hedgehogs and
antihedgehogs with decreasing temperature indicates the
growth of polar regions. On further cooling, in the case of
canonical BZT, ρ retains a value larger than pc, thereby
indicating the impeded expansion of polar regions.
Persisting hedgehogs and antihedgehogs prohibit the estab-
lishment of long-range order at any finite temperature, and
the average crystal symmetry remains cubic in BZT. In the
case of noncanonical PSN, on cooling below Tm, ρ drops
beneath pc, thereby signaling that enhanced dipolar corre-
lations effectively cancel the influence of internal random
fields and induce long-range ferroelectric order. These
observations, hence, point to a topological-based criterion
for distinguishing between canonical and noncanonical
relaxor behaviors, via the presence or absence, respectively,
of a crossing of pc by ρ. Note that we further tested this
criterion of the appearance of ferroelectricity when ρ equals
pc on a prototypical ferroelectric, PbðZr0.6Ti0.4ÞO3 (see
Supplemental Material [38]).
Interestingly, since the total topological charge is con-

strained to be zero in systems with periodic boundaries
conditions, the decrease of ρ occurring upon cooling in
both BZT and PSN can only happen by annihilation among
defects of opposite topological charge, that is, between
hedgehogs (Qþ) and antihedgehogs (Q−). It is thus of
interest to inquire into the dynamical nature of topological
singularities and their annihilation (note that the
Supplemental Material [38] provides a Monte Carlo time
autocorrelation analysis of defects spatial distribution).
For that, we make use of a hydrodynamic description
involving a two-species diffusion-annihilation process,
Qþ þQ− → ∅, with long-range forces [57,58]. Therein,
the account for conserved charge density fluctuations and a
power-law long-range interaction, usually of a Coulomb
type, among charged particles leads to an attraction
between annihilating partners and entails a new mechanism
for slow dynamics [57,58]. The annihilation behavior for a
Coulombic system in two dimensions has been of wide-
spread interest because of its connection with XY-model
kinetics [59], in which vortices and antivortices interact via
ð1=rÞ force and exhibit nontrivial dynamics. Such proc-
esses have also been studied in liquid-crystal physics,
where the singularities of the smectic director field appear
as positive and negative vortices interacting via a loga-
rithmic potential due to elastic forces [60,61]. In three
dimensions, it is expected that, in the presence of a
Coulomb interaction, the relaxation time τ of such proc-
esses is inversely proportional to the density ρ [57,58].

Coming back to the dependence of ρ on temperature
(Fig. 1), we find that for T > T0, the density ρ of PSN
can be very well approximated by an exponential relation
[62] ρ0 þ ðρ∞ − ρ0Þ exp½−w=ðT − T0Þ�, where T0 is found
to coincide with TC. Since the fitted values give ratios of ρ∞
to ρ0 that is much greater than 1 (∼28), one thus obtains a
relaxation time associated with the annihilation process
between hedgehogs and antihedgehogs that is given by
τ ∝ ðρ∞ − ρ0Þ−1 exp½w=ðT − T0Þ�. Remarkably, this latter
equation has precisely the analytical form of the Vogel-
Fulcher relaxation law that is a typical characteristic of
dipolar relaxation in relaxor ferroelectrics, including PSN
[Eq. (1)]. Notably, it was reported for PSN that the
ferroelectric phase transition coincides with the freezing
temperature Tf [63], thus enabling the identification
T0 ∼ Tf ∼ TC. We find that the parameter w entering the
fit of ρ of PSN by ρ0 þ ðρ∞ − ρ0Þ exp½−w=ðT − T0Þ� is
∼41 K (0.0035 eV), that is, about one order of magnitude
lower than that reported for dipolar relaxation measure-
ments [8]. Moreover, in the case of BZT, the density can be
well fitted by ρ∞ exp½−w=T�, but only for temperatures
above ∼108 K, yielding instead an Arrhenius law for τ
rather than a Vogel-Fulcher relation. Interestingly, a ther-
mally activated Arrhenius relaxation, as well as a departure
from it below a certain temperature, have already been
pointed out for BZT for the (low) frequency associated with
the relaxation of electric dipoles [53,64]. The parameter w
appearing in the fit of ρ by ρ∞ exp½−w=T� is about ∼38 K
(0.0032 eV) in BZT, which is, as in the case of PSN, also
about one order of magnitude lower than that associated
with the reported dipolar relaxation of BZT [64]. One can
therefore conclude that the annihilation process between
hedgehogs and antihedgehogs follows the same type of law
as dipolar relaxation (namely, Vogel-Fulcher in PSN versus
Arrhenius in BZT), but with activation energy being
smaller by one order of magnitude. The latter numerically
obtained values of w are to be associated with the lifetime
of defect pairs fluctuations [31,65] rather than with the
average energy barrier between different orientations of
individual dipoles within polar nanoregions [11]. It is worth
noting that topological defects have structures that are
stable against small fluctuations of the polarization vector
field. Interestingly, this topological stability can lead to
important effects on the dynamics of the system, preventing
the rapid relaxation of such local distortions and endowing
defects with long lifetimes and slow dynamics [66,67].
Furthermore, from the point of view of topological

defects, the obtained Arrhenius relation for the temperature
dependence of the relaxation time in BZT can be ascribed
to screened interactions among topological defects. Indeed,
Fig. 1(a) shows that, unlike PSN, BZT retains a high defect
density down to the lowest temperatures (around 18% of
the volume of the supercell is defective), and the defect-
mediated relaxation can be seen as effectively involving
noninteracting point singularities. For T < 108 K, we find
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that continued loss of the defects’ mobility, or conversely,
increased memory effects (see Supplemental Material [38])
concomitantly occurs with a stagnation of their density [a
plateau is reached by ρ of BZT, Fig. 1(a)]. Interestingly, the
residual relaxation rate at very low temperatures (see
Supplemental Material [38]) hints to a large density of
states for topological excitations at the lowest energies,
which is a signature of frustration and glassiness [68].
In summary, by adopting a topological approach for

probing the relaxor behavior, we have identified the perco-
lation of topological disorder as a criterion for discerning
between canonical and noncanonical relaxor behaviors. We
also found that the dielectric anomaly occurs at the temper-
ature at which the density of defects inflects. Moreover,
making use of a simple hydrodynamic description involving
diffusion-annihilation process among Coulombically inter-
acting oppositely charged topological defects, we found that
the dynamics of defects relates to that of relaxors within a
defect-mediated relaxation mechanism.
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