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We present a formalism for calculating the Raman scattering intensity dependent on the polarization
configuration for optically anisotropic crystals. It can be applied to crystals of arbitrary orientation and
crystal symmetry measured in normal incidence backscattering geometry. The classical Raman tensor
formalism cannot be used for optically anisotropic materials due to birefringence causing the polarization
within the crystal to be depth dependent. We show that in the limit of averaging over a sufficiently large
scattering depth, the observed Raman intensities converge and can be described by an effective Raman
tensor given here. Full agreement with experimental results for uniaxial and biaxial crystals is

demonstrated.
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The most basic equation of Raman scattering is that
connecting the scattering intensity and scattering geometry
by the Raman tensor. This relation is found in any textbook
on Raman scattering, particularly also in those specific to
crystalline materials [1,2]. Yet it has been known for almost
80 years that this relation cannot be applied to anisotropic
materials due to birefringence [3,4]. This issue led to the
conclusion that the analysis of intensities from Raman
measurements of birefringent crystals with any polarization
between the principal axes of the dielectric indicatrix is
“pointless” [5]. In semiconductor research, this issue was
not a problem for a long time since mainly opaque materials
and/or materials with cubic symmetry have been inves-
tigated, for which the established formalism holds.
However, more recently the investigation of typically
anisotropic wide-band-gap semiconductors came into
focus. Since the awareness for the problem faded over
the years, the interpretation of the observed intensity
dependence of the peaks in the Raman spectrum was
attempted based on the classic Raman tensor formalism,
which required the introduction of unphysical ad hoc
parameters such as a phase shift between the Raman tensor
elements [6-10] or an intensity offset [11-13]. Further,
theoretical calculations showed an unsatisfactorily resolved
discrepancy to experimental results [14]. These approaches
neglecting birefringence may also have been motivated by
the at-first-surprising fact that the intensity dependencies
are reproducible at completely different setups, while
birefringence causes the direction of polarization to vary
along the penetration depth, which is a characteristic
property of the focusing optics. This reproducibility could
not be explained by a first approach to take the birefrin-
gence into account [15].

Here, we solve these issues by integration over the
scattering depth range and considering the effect due to
birefringence. As a result, we obtain a general formalism
for the polarization dependence of the scattering intensity

0031-9007/16/116(12)/127401(5)

127401-1

in normal-incidence backscattering for any crystalline
sample. It explains the correct physical origin and magni-
tude of the apparent phase shift and the loss of depth
dependence as a consequence of a sufficiently large
scattering depth.

In the following, we restrict our calculations to back-
scattering with normal incidence. This can also be consid-
ered to approximately hold for focusing optics with
moderately wide apertures, depending on the refractive
index of the sample. Further, we assume an excitation
photon energy in the transparency regime that is much
larger than the phonon energy such that incident and
scattered photon energy can be assumed to be approx-
imately equal. At first, we study the case for which one
principal axis of the indicatrix is normal to the surface. The
general case is discussed at the end of the text. Within this
approximation, the polarization of the incident and scat-
tered radiation is restricted to a plane perpendicular to the
excited crystal surface; i.e., the problem becomes two
dimensional. For scattering by phonons excited in the
transparency regime, the Raman tensor is symmetric with
real components [1,16]. Thus, in two dimensions it gen-

erally takes the form
a d
R = . 1
(55 m

The Raman intensity is determined from the Raman
tensor by the relation [1,2,16]

[ x |‘31R30\2, (2)

where e, and e; are the electric field vectors of the incident
and scattered radiation at the position of the scattering
event. Owing to the birefringence, these are not necessarily
identical to the polarizations of the incident and scattered
radiation e; and e, accessible by experiment. We consider
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the part of the sample above the scattering event as an
optical element. Its effect on the polarization can be
described applying a Jones matrix [17] J(z), which
depends on the thickness of the slab z. Since the scattered
radiation has to pass back through the sample the same way
as the incident radiation, Eq. (2) becomes

I o« |e;S(0)J(z)RI(2)S™" (O)e;? (3)

for the experimentally accessible light polarizations. The
rotation matrix S(6) transforms the system of allowed
polarizations for the excited surface at the excitation
wavelength into the laboratory system [17]. The absolute
phase of the radiation is neglected because only intensities
are measured in Raman experiments. Thus, the Jones
matrix can be normalized to the first entry and, in the
basis of allowed polarizations, takes the simple diagonal

form [17]:
1 0
J(Z) = <0 it(2) > . (4)

The phase shift y(z) between light with polarization
parallel to the fast and slow axis, with the difference in
refractive indices An, is y(z) = 2zAnz/A. Since we neglect
the difference of the wavelength A for incident and scattered
light, ¥(z) is identical in both Jones matrices. We note that
the Raman tensor R in Eq. (3) is actually already an
effective Raman tensor in the sense of Ref. [18], which,
however, has the same properties (symmetric, real valued)
as the molecular Raman polarizability tensor.

The form of Eq. (3) suggests that the term R.(z) =
S(0)J(z)RJ(z)S~1(0) acts as a depth-dependent effective
Raman tensor. Expanding this term yields an expression of
the form

Reir(2) = Ro + Rie%9) + Rye(0), (5)

with the explicit terms
( cos?(6)
a
sin(0) cos(0)

cos?(6) — sin?(6)
2sin(@) cos(0) )’ (60)

Ry = sin(0) cos(0) ) (6

sin?(@)

R, = < —25sin(0) c'os(G)
cos?(6) — sin?()

sin?(@)

B —sin(@) cos ()
Ra=b < —sin(@) cos(6) ) - (60

cos?(6)

If the laboratory system is chosen equivalently to
the system of allowed polarizations, i.e., § =0, these
simplify to

(32) w0 -0

In a Raman experiment, scattering by phonons is excited
in and collected from a certain depth range within the
crystal. Assuming a homogeneous intensity distribution in
a sample ranging from z; to z,, the apparent effective
Raman tensor is obtained by integration:

1 z . .
Retr = A/ ’ Ro + Rlel)((Z) + Rzelz}(<z)dz. (8)
z /s,

Obviously, in the limit of large Az = z, — z;, the integral
corresponds to a Fourier transformation. Since y is linear in
z, the exponential functions and the constant coefficient 1
of R, correspond to the base of the L? space. Thus, in
this limit the three components R,, R;, and R, are
orthogonal to each other. This allows us to write the
scattering intensity as

I x |es,R'0ei|2 + |es,R'lei|2 + |esR2ei|2' (9)

These three terms e R;e; are referred to as & in the
following.

While Eq. (9) is strictly true only for an integration over
an infinite scattering depth, it approximately holds also for
sufficiently large Az. In order to investigate the general
case, we consider a finite integration. In this case, the
intensity is neither I = |&, + &, + &,|* as according to
Eq. (2) nor I = |&|* + |&1]* + |€,]* according to Eq. (9),
but something in between, depending on the integration
range. This can be described using three vectors x;, in three-
dimensional space with length £, which are oriented such
that 7 = |xy + x; + x,|?. Since the convergence is slower
considering a phase shift of y instead of 2y, we consider the
planar problem including x, and x; with an apparent angle
& between both, such that xox; = )& cos(&). The appar-
ent angle & between the x, and x, components is calculated
analogously and converges twice as fast. We further
introduce the normalized function f(z), which describes
the scattering depth profile. The apparent angle is then
calculated as

B I f(2)I1€0 + E1e79)Pdz — 5 - £
&= arccos< 5L ) (10)
The colinear case & =0 corresponds to I = |y + &+
&%, and & = x/2 corresponds to I = |Ey|*> + |€;]> + |,

For the measurement of sufficiently thick single crystals,
the depth profile is given by the focusing optics, which can
be approximated by a Gaussian depth profile function with
broadening o corresponding to the depth resolution. The
resulting apparent angle ¢ for focusing on the sample
surface, i.e., with the Gaussian profile centered at 0, is
depicted in Fig. 1(a). It converges quickly to z/2 and is
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FIG. 1.

Dependence of the effective angle £ on (a) the width o of a Gaussian profile centered at the sample surface, (b) the slab

thickness Az for a rectangular depth profile, and (c) the extinction coefficient @ of an absorptionlike depth profile. The depth profile
functions f(z) are plotted in the respective insets. For A = 500 nm and An = 0.02, a value of 1 on the abscissa corresponds to 25 ym

for o, Az, or 1/a.

close to that already for ¢ = 0.31/An. Assuming a mod-
erate birefringence of An = 0.02 and an excitation wave-
length of 2 =500 nm, £~ z/2 is already fulfilled for a
depth resolution of 7 ym, a value typically exceeded in
experimental setups for the investigation of bulk crystals,
explaining identical results obtained with completely dif-
ferent setups. As a consequence, for the investigation of
transparent bulk crystals, the experimental setup can
typically be chosen such that the above given formulas
hold in very good approximation, allowing us to calculate
the scattering intensity from the polarization configuration.

The thickness of thin films is typically significantly
smaller than the depth resolution; thus, a rectangular depth
profile from O to Az is often a good approximation
(reflections at the interfaces are neglected for simplicity).
The integration yields the dependence depicted in Fig. 1(b),
showing that values of Az and An yielding 0 < & < /2 are
not uncommon. In this case, the problem becomes three
dimensional and can, in general, be solved by numeric
integration. An alternative approach is described in the
Supplemental Material [19].

For completeness, the calculation for a depth profile
according to an absorption is given in Fig. 1(c). It converges
similarly to the Gaussian profile, but slightly slower. We
stress that the assumptions on the form of the Raman tensor
and the Jones matrix made above are only valid in the
absence of any resonances, which might not hold if
absorption occurs. For strong absorption, as for direct
semiconductors excited well above their band gap energy,
the absorption is typically so strong that £ ~ 0 and, there-
fore, ey = e; and e; = e, approximately hold.

In order to verify our considerations above, we carried
out Raman measurements of uniaxial ZnO and biaxial
p-Ga,0;. We used commercial samples by Crystec and
Tamura, respectively, the latter having been confirmed to be
single crystalline by x-ray studies (cf. Supplemental
Material [19]). The polarization of incident and detected
light was rotated by ¢ relative to the crystal using a 4/2
wave plate while keeping the analyzer fixed. Both parallel
(e;]le;) and cross-polarized (e; Le,) configurations were
used. From the spectra, we obtained the intensities for the
individual phonon modes as the area of Lorentzian

functions used to model the line shape of the respective
Raman lines. We used an excitation at A = 532 nm with a
microscope objective with a numerical aperture of
NA = 0.42, which yields a depth resolution > 10 um.
Detailed information on the experimental procedure can
be found in the Supplemental Material [19].

We first consider the simple and common case of a
rectangular symmetry of the excited crystal face, i.e., an in-
plane mm?2 symmetry. This is, for example, the case for the
a or m plane of hexagonal crystals like ZnO, which is
shown in Fig. 2. In this case, several simplifications apply.
The principle axes of the indicatrix can be identified with
crystallographic axes. Consequently, the laboratory coor-
dinate system can easily be set such that @ = 0. Further, the
two-dimensional Raman tensor for phonon modes and
excitation on such a plane has either off-diagonal or
diagonal elements only [1]. In the first case, R, and R,
vanish and the effective Raman tensor R = R, is
identical to the unmodified one and independent from
the scattering depth. In the latter case, only R vanishes and
the scattering intensity is described by R, and R, from
Eq. (7). The resulting angular dependence can be equiv-
alently expressed using a single, complex matrix,

(11)

R = <a 0 )
eff — 0 bei'f/ ’

Intensity

FIG. 2. Dependence of the Raman intensity of the A;(TO)
phonon mode of ZnO on the angle between the polarization and
the ¢ axis for parallel polarization (e;||e;) (black) and cross
polarization (e; Le,) (red). The bottom axis corresponds to an
intensity of 0. The experimental data (scatter plot) were fitted
(solid line) using Eq. (9).
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where & can be read off Fig. 1 using halved values for the
abscissa. This explains the very good agreement obtained
by several groups using such an approach to model the
angular intensity dependence [6—8]. Actually, for these
transparent materials, values around & ~x/2 were
reported, indicating an integration over a sufficiently large
scattering depth. Our experimental data for ZnO in Fig. 2
can also be modeled very well using & = z/2. For
materials excited in the absorption regime, complex
Raman tensor elements might actually occur and have
been reported [20,21]. However, depending on the magni-
tude of birefringence and the absorption coefficient
[cf. Fig. 1(c)], a possible influence of the birefringence
should be considered since it has a qualitatively similar
effect.

In some reports, the angular polarization dependence
was modeled using only real Raman tensor elements with
opposite signs for @ and b [11-13]. However, the applied
formulas require that an empirical intensity offset must
have been used. Using the Raman tensor formalism
introduced here, these experimental data can be modeled
well without any additional parameters, assuming
& = r/2. We note that the signs of the Raman tensor
elements are not accessible by measurements on a single
surface if & = x/2.

Raman measurements of the A, modes of monoclinic
p-Ga, 05 with excitation on its (010) plane pose the most
demanding test for the introduced formalism in its most
general form due to the low symmetry of this surface. The
optical parameters were determined by spectroscopic
ellipsometry [22]: The birefringence on this surface is
approximately An = 0.027 and 6 = 3.8° if the coordinate
system is set such that y||[100] and z||[010]. Consequently,
the approximation Eq. (9) is expected to hold.

We successfully modeled the observed Raman intensities
dependent on ¢ for all ten A, phonon modes of $-Ga,03
using Eq. (9) with only the three real Raman tensor
elements as free parameters [see, for example, Figs. 3(a)
and 3(c)]. For comparison with the approach used for
wurtzite materials [6—8] discussed above, we modeled the
same intensity dependencies using nonsymmetric, complex
Raman tensor elements, neglecting effects due to birefrin-
gence [see Figs. 3(b) and 3(d)]. This approach uses seven
free parameters (four absolute values of the tensor elements
and three relative phase shifts). While some of the phonon
modes could also be modeled with reasonable agreement
using complex Raman tensors, the agreement with the
experimental data was significantly worse for other phonon
modes as compared to using Eq. (9), particularly for such
modes with non-negligible tensor element d.

If no principal axis is parallel to the propagation
direction, a polarization component parallel to the propa-
gation direction may also occur. In this case, the dielectric
tensor of the material at the excitation wavelength must be
known. From that, the two semiaxes of the intersection
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FIG. 3. Same as Fig. 2 for two A, phonon modes of -Ga,03
excited on the (010) plane. ¢ = 0° corresponds to the direction
of the a axis. (a),(b) A" phonon at 320 cm™! and (c),(d) A'” at
767 cm™!. The experimental data (scatter plot) were fitted (solid
line) (a),(c) using Eq. (9) and (b),(d) using a complex, non-
symmetric Raman tensor.

ellipse between surface and indicatrix need to be deter-
mined. Let 7’ be the direction of the surface normal. Then
this approach yields the directions x' and y’ of allowed
displacement D) /, in the crystal. We define the matrix R as
the transformation matrix from the system of principal axes
to the system x/, y/, 7’ set as the laboratory system; thus,
0 = 0. The definition of this system requires the compo-
nents €, of the transformed dielectric tensor ReR™! to be
0. Geometrical considerations further require either €,/ or
€yy to be 0 as well, depending on the choice of the
axes 1" and y’. In the following, we choose the laboratory
system such that e, =0, without loss of generality.
Using the coplanarity of D, E, and k||z resulting from
Maxwell’s equations, the allowed electric field vectors can
be calculated using ReR™' as E; =(1,0,0)" and
E, = (€, +€,)7"*(0,e,.,€9,)". Applying the trans-
formation matrix 7 = (E|, E,), the experimentally acces-
sible incident electric field can be transformed to that
within the crystal. Therefore, Eq. (3) can be generalized to

I « |e,S(0)J(Z)TTRRR™'TJ(Z)S7 ' (O)e;|>.  (12)

The effective Raman tensor R = J(Z)TTRRR™'TJ(Z')
remains two dimensional and the deliberations above on the
dependence on the slab thickness hold; i.e., the Raman
tensor has the same form as in Eq. (5) and components
similar to Eq. (7). Assuming that the tensor elements of the
transformed, symmetric Raman tensor RRR~! are labeled
ryy for the xy and yx components, and so on, the tensor
elements of Eq. (7) must be replaced as follows:

(13a)

a = rx/x/,

Pyy €+ 2y €€y + 1ol
b= . (13b)
PR
y/Z/ Z/Z/
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rxryré‘z/zr —|— }"yrz/ey/zr

(ei,z, +€2)

d=

(13c¢)

If 7/ is parallel to a principal axis, the off-diagonal element
€y, vanishes and the simplified form is restored. We note
that generally the off-diagonal elements are at least 1 order
of magnitude smaller than the diagonal elements. Thus,
Eq. (13) is only a small correction. For all samples
investigated by us, this correction was smaller than the
experimental uncertainty.

In summary, we have introduced a formalism that allows
us to model the Raman scattering intensity for any
polarization configuration in normal incidence backscatter-
ing for optically anisotropic crystals. A simple, depth-
independent effective Raman tensor formalism can be used
for an integration over a sufficiently large scattering depth,
which is most often the case for measurements of trans-
parent single crystals, but not for thin films or in the
absorption regime. While the birefringence can be
neglected for strong absorption, its effect on thin film
measurements depends on the film thickness and the
magnitude of the birefringence.
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