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We theoretically investigate effects of quantum fluctuations on superfluid spin transport through easy-
plane quantum antiferromagnetic spin chains in the large-spin limit. Quantum fluctuations result in the
decaying spin supercurrent by unwinding the magnetic order parameter within the easy plane, which is
referred to as phase slips. We show that the topological term in the nonlinear sigma model for the spin
chains qualitatively differentiates the decaying rate of the spin supercurrent between the integer versus
half-odd-integer spin chains. An experimental setup for a magnetoelectric circuit is proposed, in which
the dependence of the decaying rate on constituent spins can be verified by measuring the nonlocal
magnetoresistance.
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Introduction.—One-dimensional quantum magnetism
has been a natural hotbed to seek and study exotic states
that defy classical descriptions [1,2]. A prototypical exam-
ple showing the importance of quantum effects is provided
by Heisenberg antiferromagnetic spin chains. For isotropic
spin-s chains, Haldane suggested in 1983 [3] that integer-s
chains have disordered ground states with gapped excita-
tions unlike half-odd-integer-s chains, which have gapless
excitations [4]. The existence of the gap has been exper-
imentally confirmed for s ¼ 1 [5].
By considering anisotropic antiferromagnetic spin chains

in the large-s limit, Affleck [6] was able to attribute this
distinction between integer and half-odd-integer spin chains
to the topological term in the O(3) nonlinear sigma model
that describes the dynamics of the local Néel order parameter
[3,7,8]. For sufficiently large s, easy-plane spin-s chains are
in the gapless XY phase, where order-destroying excitations
are vortices of the order parameter in the two-dimensional
Euclidean spacetime. It is the Skyrmion charge Q of a
vortex, quantifying how many times the order parameter
wraps the unit sphere, that serves as the topological charge in
the nonlinear sigma model. Figure 1 illustrates vortices with
minimum nonzero Skyrmion charges Q ¼ �1=2, which are
often referred to as merons [9]. Only for half-odd-integer
spin chains, the topological term creates destructive inter-
ference between vortices and, thereby, suppresses effects of
their quantum fluctuations [1,10].
Superfluid spin transport, a spin analog of an electrical

supercurrent, has been proposed in magnets with easy-
plane anisotropy, where the direction of the local magnetic
order within the easy plane plays the role of the phase of a
superfluid order parameter [11–14]. Spin supercurrent
therein is sustained by a spiraling texture of the magnetic
order, being proportional to the gradient of the in-plane
components of the order parameter. Under the guidance of
established theories for resistance in superconducting wires
[15], we have recently investigated the intrinsic thermal

dissipation in one-dimensional superfluid spin transport,
which arises via thermally activated phase slips [16] (that
unwind the phase by lifting the magnetic order out of the
easy plane [17]). At sufficiently low temperatures, however,
dissipation is mainly induced by quantum fluctuations via
quantum phase slips (QPS) [18,19]. The QPS in super-
conducting wires correspond to vortices of the phase of the
order parameter in the Euclidean spacetime. Likewise, the
QPS in one-dimensional spin superfluidity correspond to
vortices of the magnetic order parameter. Then, there arises
a natural question regrading the role of the topological
term for the integer-s and half-odd-integer-s chains in the
QPS-induced dissipation of superfluid spin transport.
In this Letter, we theoretically study the QPS in super-

fluid spin transport through easy-plane quantum antiferro-
magnetic spin chains. For an integer s, the topological term
is inoperative, and dissipation arises due to the QPS of
the Skyrmion charges Q ¼ �1=2 that change the winding
number by 2π. For a half-odd-integer s, these QPS are
completely suppressed due to destructive interferences.
Instead, the QPS of twice-larger Skyrmion charges,
Q ¼ �1, give rise to dissipation by unwinding the phase
by 4π. See Fig. 2 for illustrations. Dissipation in superfluid
spin transport can be characterized by the spin-current

FIG. 1. Vortex configurations of the local Néel order parameter
in the Euclidean spacetime ðx; τÞ with Skyrmion charges
(a) Q ¼ 1=2 and (b) Q ¼ −1=2.
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decay rate, κðI; TÞ, which depends on the spin current I
and the ambient temperature T. One of our main findings
is a qualitative difference between the decay rates in the
integer-s and half-odd-integer-s spin chains for large
spin s ≫ 1, which can be summarized as κðI; TÞ ∝
½maxðI; TÞ�2μ−3, where

μ ¼
�
πs=2; for an integer s

2πs; for a half-odd-integer s
: ð1Þ

The exponent μ parametrizes the strength of the interaction
between the QPS, which is proportional to the square of
their Skyrmion charges; μ is thus 4 times larger for the half-
odd-integer s than for the integer s. These spin-dependent
transport exponents can be measured through the voltage or
temperature dependence of the electrical resistance of
the magnetoelectric circuit in Ref. [20] (see Fig. 3 for its
schematics), which we propose for probing superfluid spin
transport, using a quasi-one-dimensional easy-plane anti-
ferromagnetic insulator, e.g., ðCH3Þ4NMnCl3 (s ¼ 5=2)
[21] as a spin transport channel.
Model.—We consider an anisotropic Heisenberg anti-

ferromagnetic spin-s chain that can be described by the
Hamiltonian

H ¼ J
X
n

½Sn · Snþ1 − aSznS
z
nþ1 þ bðSznÞ2� ð2Þ

with S2
n ¼ sðsþ 1Þ, where small positive constants a ≪ 1

and b ≪ 1 parametrize the anisotropy. In the large-s limit,
neighboring spins are mostly antiparallel, Sn ≈ −Snþ1 in
the low-energy states, and the long-wavelength dynamics
of the chain can be understood in terms of the slowly
varying unit vector n ≈ ðS2n − S2nþ1Þ=2s parametrizing the
direction of the local Néel order parameter. The dynamics
of the field n follows the nonlinear sigma model [3,6–8]

with the Euclidean action S ¼ iθQþ S0 (in units of ℏ),
where θ≡ 2πs is referred to as the topological angle. Here,

Q≡ 1

4π

Z
dx

Z
ℏβ

0

dτn · ð∂xn × ∂τnÞ ð3Þ

is the Skyrmion charge of n that measures how many times
nðx; τÞ wraps the unit sphere as the space and imaginary-
time coordinates, x and τ, vary, and is thus topological.
The nontopological part of the action is given by

S0 ¼
1

2g

Z
dx

Z
ℏβc

0

dðcτÞ
�ð∂τnÞ2

c2
þ ð∂xnÞ2 þ

n2z
λ2

�
; ð4Þ

where c≡ 2Jsd=ℏ serves as a speed of “light” for the
theory, d is the lattice constant, and λ≡ d=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðaþ bÞp

is a
characteristic length scale (providing the ultraviolet cutoff
for our theory) governed by the anisotropy. Here, g≡ 2=s
is the dimensionless coupling constant, which sets the
quantum “temperature” governing the magnitude of quan-
tum fluctuations [3].
The corresponding partition function is given by

Z ¼
Z

Dnðx; τÞδðn2 − 1Þ expð−iθQ − S0Þ: ð5Þ

We consider the fields n that are periodic in the imaginary
time τ, nðx; τÞ ¼ nðx; τ þ ℏβÞ. The partition function Z is
then a periodic function of the topological angle θ. For the
integer and half-odd-integer s, therefore, we can effectively
set θ ¼ 0 and θ ¼ π, respectively [1].
Spin superfluidity.—The classical action for nðx; tÞ can

be obtained from the above quantum action S0 by a Wick
rotation, τ↦it. Its invariance under spin rotations about the
z axis implies conservation of spin angular momentum
(polarized along the z axis) and leads us to parametrize n
in spherical coordinates, ψ and ϕ, defined by n ¼
ðsinψ cosϕ; sinψ sinϕ; cosψÞ. The density and current

FIG. 2. Elementary vortices, which control the winding number
Δϕ, with Skyrmion charges (a)Q ¼ 1=2 and (b)Q ¼ 1. For half-
odd-integer spin chains, 2π phase slips are prohibited by
destructive interference between vortices with Skyrmion charges
Q ¼ �1=2. See the main text for a detailed discussion.

FIG. 3. A change in the electrical resistance jδρj of the
magnetoelectric circuit as a function of an applied voltage V
on a logarithmic scale. The circuit consists of a quasi-one-
dimensional antiferromagnet (a 3D stack of parallel spin chains)
and two platinum layers. See the main text for a detailed
discussion.
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of the spin angular momentum, ρ≡ ðℏ2=4JdÞsin2ψ∂tϕ
and I ≡ −Js2dsin2ψ∂xϕ, satisfy the continuity equation
[11,22]:

∂tρþ ∂xI ¼ 0: ð6Þ
Time-independent stable solutions to the classical equa-
tions of motion (which includes the above continuity
equation) are given by

ψðxÞ ¼ π=2; ϕðxÞ ¼ ϕ0 þ kx ðjkj < λ−1Þ; ð7Þ
with ϕ0 an arbitrary reference angle [11]. The spin current,
I ¼ −Js2kd, is sustained by a spiraling texture of n within
the easy plane, which we identify as the spin supercurrent
by the analogy to the electrical supercurrent maintained by
a gradient of the phase of the superconducting order
parameter. The ultraviolet cutoff λ−1 sets a critical current
for stable superfluid spin transport. When the chain is long
enough, L ≫ λ, which we assume henceforth, actual
boundary conditions at the ends of the chain are not
important. Imposing periodic boundary conditions on the
order parameter, nðx ¼ 0; τÞ ¼ nðx ¼ L; τÞ, quantizes the
allowed spin supercurrent, kν ¼ 2πν=L, where ν ¼ Δϕ=2π
is the winding number of n in the easy plane.
QPS in spin superfluidity.—The spin supercurrent in a

closed chain can be indefinitely maintained if there are no
fluctuations. Finite dissipation, however, arises due to
thermal and quantum fluctuations, which provide transition
channels between steady states with different winding
numbers ν ≠ ν0 [17]. Such events changing winding num-
bers are referred to as phase slips. In this Letter, we are
interested in the QPS, which dominate over the thermally
activated phase slips at sufficiently low temperatures.
The QPS are vortex configurations of n in the two-

dimensional Euclidean spacetime [15]. For a single vortex
centered at the origin, which is a saddle point of the action
S0, the azimuthal angle is given by

ϕqðx; τÞ ¼ ϕ0 þ q arctanðcτ=xÞ; ð8Þ
where a nonzero integer q is the vortex vorticity. The polar
angle is given by a function ψðrÞ of the radial distance
r≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ c2τ2
p

, which solves d2ψ=dr2 þ ð1=rÞdψ=dr ¼
− sinψ cosψð1=λ2 − q2=r2Þ with boundary conditions
ψð0Þ ¼ ð1 − pÞπ=2 and ψðr → ∞Þ ¼ π=2 [23]. The order
parameter n is substantially out of the easy plane only
within the vortex core r≲ λ. At the vortex center, the order
parameter points either toward the north pole, p ¼ þ1, or
the south pole, p ¼ −1, which is referred to as the vortex
polarity. Vortex vorticity q and polarity p govern the
Skyrmion charge Q ¼ pq=2 [24]. See Fig. 1 for illustra-
tions of vortices with Q ¼ �1=2.
Let us now consider a dilute gas of n QPS in the

background of a low spin current k ≪ λ−1 [25]. The gas of
the QPS must be vorticity neutral,

P
iqi ¼ 0, to meet the

periodic boundary conditions. Substituting a saddle point

solution, ϕ ¼ kxþP
iϕqiðx − xi; τ − τiÞ and the corre-

sponding ψðx; τ; fpigÞ, into the action, we find

S ¼ iθ
X
i

piqi=2þ S0; ð9Þ

S0 ¼
X
i

ScoreðqiÞ − ð2π=gÞ
X
i<j

qiqj lnðdij=λÞ

þ ð2π=gÞck
X
i

qiτi; ð10Þ

where dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi − xjÞ2 þ c2ðτi − τjÞ2

q
≫ λ is the dis-

tance between the QPS [26]. The nontopological part of
the action S0 consists of three terms. The first term is the
contribution from the vortex cores to the action, which can
be estimated as Score ∼ π=g (increasing with q). The second
term is the logarithmic interaction between the QPS. The
third term couples the QPS to the spin current ∝ k.
The topological term iθ

P
ipiqi=2 depends on the

polarities fpig of the QPS, whereas the nontoplogical term
S0 does not. For fixed vorticity configuration fqig, the
partition function is summed over two possible polarities
for each QPS, pi ¼ �1, which results in

Z ∝ e−S0ðfqigÞ
Y
i

cos
θqi
2

ð11Þ

As pointed out by Affleck [6], the product factor of the
partition function distinguishes the integer and half-odd-
integer s. For the integer s, the topological angle is zero
θ ¼ 0, and thus, the factor is 1. A half-odd-integer s,
however, yields θ ¼ π, and the factor vanishes when any of
the vorticities fqig are odd. This destructive interference
between the QPS with odd vorticities can be effectively
captured by setting an elementary vorticity of the QPS to 2.
Let us use the symbol q0 to denote an elementary vorticity;
q0 ¼ 1 and q0 ¼ 2 for an integer and half-odd-integer s,
respectively. Low-energy dynamics of the order parameter
will be dominated by the QPS with the elementary vorticity.
We therefore focus on a gas of such QPS, which is
described by the effective action:

Seff ¼ nScore − 2μ
X
i<j

~qi ~qj lnðdij=λÞ þ σ
X
i

~qiτi; ð12Þ

where μ≡ πq20=g [Eq. (1)] is the interaction strength
between the effective QPS, σ ≡ 2πq0ck=g is the rescaled
spin current, and ~qi ≡ qi=q0 ¼ �1 is the elementary
vorticity sign. The effective action Seff without the last
term has been invoked when studying the phase diagram of
spin chains, e.g., in Ref. [1].
Analogy to superconducting wires.—Owing to the for-

mal equivalence of the action Seff to the action for a gas of
the QPS in a superconducting wire, specifically Eq. (4) in
Ref. [19], we can adopt the results for superconductivity to
our case of spin superfluidity. First of all, there is a
superfluid-to-insulator phase transition at the critical
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interaction strength μ� in the absence of the spin current,
σ ¼ 0. For μ > μ�, the QPS of opposite vorticities attract
strongly and form bound pairs, keeping spin superfluidity
intact. As μ decreases below μ�, the QPS proliferate and
destroy spin superfluidity, driving the system to the
insulating phase. These insulating and superfluid phases
are, respectively, the gapped Haldane and the gapless XY
phases of anisotropic spin chains [1]. The condition for
being in the superfluid phase is μ > μ� ≈ 2 [19,27], which
corresponds to s ≥ 2 and s ≥ 1=2 for the integer and half-
odd-integer s, respectively [28].
Secondly, the QPS rates have been derived for a super-

conducting wire in Ref. [19] by following the Langer’s
theory for the decay of metastable states [29]. By adopting
the results to the case of spin superfluidity, we can find the
average decay rate κðI; TÞ of the winding number, _ν ¼ −κν,
as a function of the spin current I and the ambient
temperature T in the deep superfluid regime μ ≫ 1:

κðI; TÞ ¼ z2ω0ðT=ℏω0Þ2μ−2F ðI=TÞ;
F ðξÞ≡ C sinhðξ=2ÞjΓðμ − 1=2þ iξ=2πÞj2; ð13Þ

where z≡ expð−ScoreÞ is the fugacity of the QPS, ω0 ≡
c=λ is the characteristic frequency of the spin chain (ℏω0 is
the gap of the out-of-easy-plane spin wave branch [30]),
and C≡ 8π3=2ð2πÞ2μ−2Γðμ − 1=2Þ=ΓðμÞΓð2μ − 1Þ is a
numerical constant [31]. The expression for κðI; TÞ can
be simplified as [32,33]

κðI; TÞ ∝
�
z2ω0ðT=ℏω0Þ2μ−3; for I ≪ T

z2ω0ðI=ℏω0Þ2μ−3; for T ≪ I
: ð14Þ

Such quantum effects should manifest at sufficiently low
temperatures, where quantum fluctuations dominate over
thermal fluctuations. The crossover temperature T� can be
estimated by comparing the classical phase-slip energy
barrier (divided by T) [17] with the action of the non-
interacting QPS [19], ℏc=λT� ∼ Score. Using Score ∼ π=g
yields T� ∼ ℏc=πsλ.
Experimental proposal.—The supercurrent decay rate can

be experimentally inferred by measuring the electrical
resistance of the magnetoelectric circuit that has been
proposed for probing superfluid spin transport [20]. The
circuit consists of a quasi-one-dimensional easy-plane anti-
ferromagnet and two parallel-connected metals with strong
spin-orbit coupling (e.g., platinum) sandwiching it. See
Fig. 3 for schematics of the setup. With charge current
flowing, two interfaces of the antiferromagnet to the metals
act as a spin source and drain for spin transport via spin-
transfer torque and spin pumping [34]. The spin supercurrent
is sustained by a spiraling texture of the local order parameter
within the easy plane. The QPS disturb the texture and
unwind it by 2π for an integer s and 4π for a half-odd-integer
s, with the frequency κ. This unwinding of the phase
propagates to the ends of spin chains and induces the

dynamics of spins at the interfaces. Via spin pumping, spin
rotations generate an electromotive force on electrons in the
metals,which decreases the effective resistance of the circuit.
Following derivations of Refs. [17,20], we can calculate

the change of the effective resistance: ρ → ρþ δρ, where
δρ ¼ −ϑ2κðI; TÞLA=2Js2d (treating the QPS as a pertur-
bation to uniform spin-current states). Here, I is the spin
current flowing through a single chain of cross section A, ρ
is the resistivity of the metal, and ϑ is related to the effective
interfacial spin Hall angle Θ via ϑ≡ ðℏ=2etÞ tanΘ, with
−e being the electric charge of a single electron and t being
the thickness of the metals in the direction perpendicular to
the interface. Figure 3 schematically depicts the resistance
change δρ as a function of a voltage V on a logarithmic
scale at a fixed temperature. Above the transition voltage
V�, at which the spin current is equal to the temperature
I ¼ T, ln jδρj increases linearly as lnV increases with the
slope 2μ − 3 that is determined by constituent spins. Below
the transition voltage, δρ converges to a constant value that
is determined by the ambient temperature.
For quantitative estimates, let us take the following

parameters for a quasi-one-dimensional antiferromagnet
ðCH3Þ4NMnCl3 [21]: s ¼ 5=2, Js2 ¼ 85 K, Js2ðaþ bÞ ¼
2 K, d ¼ 3 nm, and the interchain distance d0 ¼ 9 nm
(yielding A ¼ d02 ¼ 81 nm2). The associated continuum
parameters are λ ¼ 10 nm and c ¼ 3 × 105 m=s, which
yield the critical spin current Ic ¼ Js2d=λ ¼ 18 K and the
crossover temperature T� ∼ 5 K. For geometry of the
materials, we consider the platinum metals with a thickness
t ¼ 5 nm and the antiferromagnet with a length L ¼ 1 μm.
Using Θ ¼ 0.03 for the interfacial spin Hall angle (mea-
sured for PtjYIG interfaces [35]), the change in the effective
resistance is δρ ¼ −0.1 μΩ at the spin current of I ¼ Ic=10
and the temperature T ¼ 3 K.
Discussion.—In certain spin chains, dimerization of sites

can occur at low temperatures, e.g., as a result of the spin-
Peierls transition [36]. The Hamiltonian then acquires a
new term that breaks the sublattice symmetry; H → Hþ
αJ

P
ið−1ÞiSi · Siþ1. The topological term in the nonlinear

sigma model changes as well: θ ¼ 2πSð1þ αÞ [37]. With
this change of θ, for a half-odd-integer s, a pair of the
QPS with Skyrmion charges Q ¼ �1=2 contributes to the
partition function with the prefactor 4 sin2ðπα=2Þ, which
would change the elementary vorticity q0 from 2 to 1.
In this Letter, we have focused on one-dimensional spin

chains, in which the effect of the QPS is strong enough to
destroy long-range magnetic order at zero temperature.
Quantum fluctuations are less important in higher-
dimensional systems. For example, the Heisenberg easy-
plane antiferromagnet on the square lattice orders at zero
temperature [38], which justifies the semiclassical mean-
field treatment of superfluid spin transport [14].
Ferromagnetic spin chains with easy-plane anisotropy

can also exhibit superfluid spin transport [14]. While
thermally activated phase slips work out analogously in
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two cases [17], there are important differences in the QPS.
In particular, the ferromagnetic spin chains order at zero
temperature in spite of the QPS-induced disturbances (see,
e.g., [39]). Therefore, the superfluid spin transport is not
expected to exhibit any low-energy anomalies.
We would like to mention that QPS in topological

superconductors occur in multiples of 4π (instead of 2π
in conventional superconductors) [40] as in superfluid spin
transport through half-odd-integer spin chains.
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