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Conventional s-wave superconductors repel an external magnetic field. However, a recent experiment
[A. Di Bernardo et al., Phys. Rev. X 5, 041021 (2015)] has tailored the electromagnetic response of
superconducting correlations via adjacent magnetic materials. We consider another route of altering the
Meissner effect where spin-orbit interactions induce an anisotropic Meissner response that changes sign
depending on the field orientation. The tunable electromagnetic response opens new paths in the utilization
of hybrid systems comprising magnets and superconductors.
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Introduction.—The Meissner effect is the expulsion of
magnetic fields in superconductors, and is one of the two
defining properties of such materials, the other being the
absence of electrical resistance. Experiments have shown
[1] that a nonsuperconducting material can also exhibit a
Meissner response when it is in proximity to a super-
conductor. Via the proximity effect, superconducting cor-
relations leak into the neighboring metal. Intuitively, one
might expect stronger superconducting correlations to give
rise to a stronger Meissner response in the normal metal.
The modeling of such systems via quasiclassical theory
largely confirms this picture [2], except for the observation
that the magnetic susceptibility has a puzzling reentrant
behavior as a function of temperature [3–5].
When superconductors are placed in contact with ferro-

magnets, triplet Cooper pairs emerge that carry a net spin
[6–9]. Such pairs are additionally characterized by an odd-
frequency symmetry [10] which influences several physical
properties, such as the electronic density of states and the
electromagnetic response. Very recently, an experiment
[11] observed a paramagnetic Meissner effect in a
Nb=Ho=Au structure. In this system, superconductivity
enhanced the magnetic signal rather than expelling it. Such
a finding is of a fundamental interest since it questions the
hallmark property of perfect diamagnetism in supercon-
ductors. From a practical point of view, a paramagnetic
Meissner effect could lead to an integration of magnetic and
superconducting materials in a way that has not been
possible previously. Moreover, the recent demonstration
of remotely induced magnetism via a superconductor
reported in Ref. [12] suggests that the study of how
superconductivity influences magnetic signals is particu-
larly timely.
Motivated by these experimental advances, we show in

this Letter that, by combining superconductors with spin-
orbit coupled materials, the Meissner effect can be modu-
lated by the orientation of an external magnetic field. Not
only does the Meissner response of the system become

anisotropic as a function of field orientation, but it can even
change sign. This offers a way to control the electromag-
netic response of a superconducting system in situ. In
addition, we demonstrate that magnetic exchange fields h
that are much smaller than the superconducting gap Δ0,
e.g., induced via the Zeeman effect of an external field, can
lead to a similar reentrant behavior of the susceptibility to
the experiments in Ref. [3–5].
Theory.—We consider a superconductor–normal metal

(S-N) bilayer, where intrinsic spin-orbit coupling (SOC)
exists in the N part. Possible candidates are materials with a
noncentrosymmetric crystal structure such as InAs, which
additionally has a high effective g factor (strong coupling
between the external field and electron spins). We take into
account an external magnetic field applied to this structure
and describe its orientation via the angle θ (see Fig. 1). The
superconductor is assumed to act as a reservoir by setting
its dimension much larger than the superconducting coher-
ence length ξS. To determine the Meissner response of the
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FIG. 1. The proposed experimental setup. A superconductor–
normal metal (S-N) bilayer where inversion symmetry is broken
in theN part, giving rise to intrinsic spin-orbit coupling. Inversion
symmetry breaking is assumed throughout the N part, e.g., by
using a noncentrosymmetric crystal such as InAs or InSb, and the
applied magnetic field is oriented an angle θ relative to the
direction of the broken inversion symmetry.
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system under consideration, we use the quasiclassical
theory of superconductivity [13–15]. In the diffusive limit,
the resulting physics is described by the Green function
matrix ĝ that solves the Usadel equation [16]. We use a
linear-response theory [2,17] to compute the supercurrent
due to the external magnetic field. Such an approach
quantitatively accounts for experimental findings of the
conventional diamagnetic Meissner effect in conventional
S-N structures [2]. Considering a strength of the external
field in the range 10–100 mT and assuming [18] g ¼ 20 as
relevant for InAs or InSb, the resulting induced Zeeman-
splitting h is (0.005–0.05ÞΔ0. Because of the external field,
a small Zeeman splitting is present in the normal metal
since the Meissner response is incomplete, which we model
by adding a small exchange term h. The SOC is accounted
for by treating it as an SU(2) gauge field [19,20], included
in the differentiation operator ~∇X ¼ ∇X − i½Â; X�−, where
X is an arbitrary function. The inversion symmetry is
broken along the unit vector n̂ ¼ ½− sin θ; cos θ; 0�. To
linear order in the momentum, this corresponds to having
a Rashba term HR ¼ −αðσ × kÞ · n̂ in the Hamiltonian,
where σ is the Pauli vector and n̂ points along the direction
of inversion asymmetry. In our calculations, we fix the
external field in the y direction and vary n̂. The resulting
gauge field then reads Â ¼ −αðsin θσ̂y þ cos θσ̂xÞ.
However, we emphasize that this procedure is fully
equivalent to rotating the external field and keeping the
sample intact, which might be preferable experimentally.
The S-N interface is located at z ¼ 0, and the vacuum
interface at z ¼ L, where L is the length of the N. The
Usadel equation in the N is

iD ~∇zðĝN ~∇zĝNÞ ¼ ½ϵρ̂3 þ M̂; ĝN �−; z ∈ ½0; L�; ð1Þ

with ρ̂3 ¼ diagð1; 1;−1;−1Þ, where D ¼ τv2F=3, ϵ, and
M̂ ¼ hdiagðσ; σ�Þŷ are the diffusion constant, the quasi-
particle energy measured relative to the normal-state Fermi
level, and the exchange term, respectively. The Usadel
equation is accompanied by the boundary conditions [21]
2ðLΩNÞĝRN ~∇ĝRN ¼ ½ĝRi ; ĝRN �− at z ¼ 0, where R indicates
that we refer to the retarded component of the Green
function, and ĝRi ¼ ĝRBCS, where ĝRBCS is the bulk BCS
solution of the Usadel equation, at the S − N interface, and
~∇ĝRN ¼ 0 at the vacuum interface. ΩN is a parameter
describing the interface transparency. In all of the numeri-
cal calculations, we useΩN ¼ 4. Once ĝ has been obtained,
one may compute the supercurrent density flowing through
the system via the formula [13]

j ¼ N0eD
16

Z
∞

−∞
dεTrfρ̂3ðǧ ~∇0ǧÞKg; ð2Þ

where the covariant derivative, ~∇0, contains both the U(1)
electromagnetic vector field and the SU(2) SOC field. The

Green function matrix, ǧ, includes the retarded, advanced,
and Keldysh components [15]. We find the Meissner
response current from Eq. (2), by extracting the term which
is proportional to the electromagnetic vector potential,

jdi ¼ −i
N0e2D
16

AiðrÞ
Z

∞

−∞
dϵjdϵ;iðr; εÞ tanh

�
βϵ

2

�
; ð3Þ

where jdϵ ðr; ϵÞ ¼ Trfðρ̂3ĝRÞ2 − ðρ̂3ĝAÞ2g. In linear
response, we solve the Usadel equation without the
electromagnetic vector potential and use the solution for
ĝ in Eq. (3) in order to find the Meissner current. One can
show that the contributions from ∇ and Â in ~∇0 to the
current in Eq. (2) vanish. The last step consists of solving
the Maxwell equation ∇ × B ¼ μ0j in order to obtain the
magnetic vector potential AðzÞ in the normal metal. Having
determined AðzÞ, we may then compute, e.g., the local
supercurrent or the magnetic susceptibility, which both
probe the Meissner response of the system. We choose the
London gauge A ¼ ½AðzÞ; 0; 0� and obtain

∂2
zAðzÞ ¼ −μ0jdx: ð4Þ

We assume that the applied field is completely screened
within the bulk superconductor, and that there is no
screening at the vacuum edge of N [17]. With these
assumptions, the boundary conditions become Aðz ¼ 0Þ ¼
0, ðdA=dzÞðz ¼ LÞ ¼ μ0H. The susceptibility, χ, the
response of the material to the external field integrated
over L, is then obtained as

χ ¼ AðLÞ=μ0HL − 1: ð5Þ
Having solved the Maxwell equation, one can also

find the magnetization, which is related to the vector
potential MðzÞ ¼ ð1=μ0ÞBðzÞ −H. For our system, having
B ¼ ∇ × AðzÞ pointing in the y direction, we get MðzÞ ¼
(0;MðzÞ; 0). In our simulations, we set N0e2DΔ0μ0L2=
ð16ℏÞ≡ k ¼ 16 and ξS=L ¼ 0.3. We have verified that
altering the value of k in a wide range of 5 orders of
magnitude does not influence the results qualitatively, and
hence the results presented herein are representative.
We have solved the above set of differential equations

(the Usadel and Maxwell equations) numerically, utilizing
the Ricatti parametrization [22] for the quasiclassical Green
function ĝ extended to include SOC [23,24].
Results.—Before providing a fully numerical solution, it

is instructive to consider how the exchange field and SOC
induce triplet Cooper pairs. The odd-frequency symmetry
of these pairs results in a paramagnetic Meissner response,
in contrast to the conventional spin-singlet pairs, which
generate a screening supercurrent [25–28]. Assuming a
weak proximity effect, one derives the following diffusion
equations for the singlet fs and triplet f t superconducting
correlations:
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i
2
D∂2

zfsðzÞ ¼ ϵfsðzÞ − h · f tðzÞ;
i
2
D∂2

z f tðzÞ ¼ðϵþRÞf tðzÞ − hfsðzÞ; ð6Þ

where the exchange field points in the y direction
so that h ¼ hŷ, h is the strength of the exchange field,
and R ¼ 2iDðα2Ωr þ αΩp∂zÞ. We define s≡ sin θ;
c≡ cos θ, and

Ωr ¼

0
B@

−s2 cs 0

−cs c2 0

0 0 1

1
CA; Ωp ¼

0
B@

0 0 s

0 0 −c
s c 0

1
CA: ð7Þ

The exchange field h induces the triplet component f t∥h.
The SOC, however, allows the coupling to the triplet
Cooper pairs to be varied by changing θ, i.e., rotating
the magnetic field. As will be demonstrated below, the fact
that the Meissner response becomes highly anisotropic with
regard to variations in θ indicates that the triplet generation
is an important factor in determining the electromagnetic
response of the superconducting correlations. In particular,
one should note that, for an orientation θ ¼ π=2 of the
external field, we can see from Eqs. (6) and (7) that the
triplet components become decoupled and that the situation
is equivalent to having no SOC. Our numerical results are
also consistent with this statement.
We consider first the case without SOC for a long normal

metal, as in the experiments of Refs. [3–5]. The magnetic
susceptibility as a function of temperature T is shown in
Fig. 2(a) both with and without an exchange field. For

h ¼ 0, we see, as expected, a conventional diamagnetic
Meissner effect. Interestingly, even for a very small
exchange field h=Δ0 ¼ 0.05, we observe that χ vs T
displays a reentrant behavior. To understand the physical
origin of this behavior, we first note that, when the normal
metal length satisfies L ≫ ξS, the proximity-induced mini-
gap is much smaller than the superconducting gap Δ0. The
minigap is determined by the Thouless energy [29]
εT ¼ D=L2, so that longer samples have smaller minigaps.
Now, in the presence of exchange fields h=Δ0 ∼ εT=Δ0 ¼
ðξS=LÞ2, the triplet proximity effect becomes resonant and
results in a zero-energy peak in the density of states [30].
For smaller minigaps (larger L), only a small exchange
field is needed to get sufficiently close to resonance, which
explains why a long normal metal can be influenced by a
small h. As seen in the inset of Fig. 2(a), a change in ξS=L
will also give reentrant behavior, as long as h is lowered
accordingly. Since εT is now smaller, the minimum of χ
occurs at a lower temperature.
The resonant behavior also influences the spectral

current density, and inspection of this quantity reveals
why the Meissner current, and in turn the susceptibility χ,
behaves nonmonotonically. Consider Figs. 2(b) and 2(c),
where we have plotted the spectral current without and with
the exchange field. When the exchange field is turned on,
there is both a positive and a negative contribution in the
spectral supercurrent. What ultimately determines the total
Meissner supercurrent in Eq. (3) is how these low-energy
contributions are weighted by the distribution function
factor tanhðβϵ=2Þ. At low temperatures, where β is large,
the positive contribution to the shielding supercurrent is
weighted more efficiently. Increasing the temperature shifts
the weight toward the negative contribution and the
Meissner response becomes more diamagnetic. There thus
exists a crossover temperature regime where there is a
competition between these two phenomena, which leads to
the reentrant effect shown in Fig. 2(a).
We now turn to the effect of including SOC and show

that altering the field orientation θ causes a transition from a
standard Meissner effect to a paramagnetic Meissner
response. This pertains uniquely to the presence of SOC:
in its absence, the Meissner response is completely inde-
pendent of the field orientation. To see that this is a robust
effect that occurs over a broad range of exchange field
values, we have plotted in Fig. 3 the supercurrent-induced
magnetization response for θ ¼ 0 and θ ¼ π=2 for several
values of h. It is found that rotating the field by 90° (from
θ ¼ 0 to θ ¼ π=2) now inverts the sign of the orbital
response and the supercurrent generates a magnetization
that enhances the net magnetic field. To the best of our
knowledge, this is the first prediction of how the Meissner
response in a normal metal can be inverted in situ.
The physical origin of this phenomenon can be traced

back to how the generation of triplet Cooper pairs depends
on the magnetic field orientation θ, as seen from the

FIG. 2. (a) Magnetic susceptibility χ vs temperature in the
absence of SOC, α ¼ 0. When a small exchange field is present,
the reentrant effect comes into play. The dashed lines are added as
a guide for the eye. (Inset) Reentrance effect for ξS=L ¼ 0.043
and h ¼ 0.001Δ0. The spectral Meissner response, −ijdϵ , for
(b) h=Δ0 ¼ 0 and (c) h=Δ0 ¼ 0.05 shows that a positive
contribution to the spectral current appears when we add the
exchange field. Note that while we only plotted for positive
energy, the spectral current is an odd function of the energy, while
−ijdϵ tanh βϵ=2 is even.
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analytical equations. For θ ¼ 0, Eqs. (6) and (7) show that
the various triplet components of ft are coupled, which
might suggest that the Meissner response should become
more paramagnetic due to the increased pathways to create
triplets. In contrast, we see in Fig. 3 that the opposite takes
place: a diamagnetic effect occurs for θ ¼ 0, while the
signal becomes paramagnetic for θ ¼ π=2 (where the SOC
has no effect). The reason for this is that besides coupling
the components of f t, the SOC has an additional conse-
quence: it introduces a depairing effect on the triplet
correlations in the system due to the term ∝ Ωr, which
adds an imaginary component to the quasiparticle energy.
We find that this effect typically dominates for weak
exchange fields, and hence it restores the orbital response
of the system to a conventional Meissner effect. The
modification of the spectral supercurrent due to the
presence of SOC for θ ¼ 0 is shown in the inset of
Fig. 3: the presence of triplets is manifested via a positive
contribution to the current, whereas the diamagnetic
response (the negative peak) is larger and results in a net
conventional Meissner response.
Discussion.—Previously, paramagnetic Meissner effects

have been discussed in the context of high-Tc super-
conductors [31–34]. For such a system, the presence of
Andreev surface-bound states gives a paramagnetic con-
tribution to the shielding supercurrent but is not strong
enough to render the total Meissner response paramagnetic
in large superconductors [35]. Reference [36] showed that
repulsive interactions in the N can induce a midgap bound
state at a S-N interface, leading to a paramagnetic Meissner
effect. It is also important to emphasize that metastable
paramagnetic Meissner effects have been shown to

originate from other types of effects which are related
not to unconventional superconductivity, but to flux cap-
turing at the surface for small superconductors [37]. In this
case, the conventional Meissner state is restored by external
noise. This scenario is distinct from that of the present
Letter, where the paramagnetic Meissner effect occurs due
to an exotic type of odd-frequency superconductivity.
The effects predicted in this Letter require a local

magnetization probe. This could be accomplished using
low-energy muon spin spectroscopy which offers a very
high sensitivity to magnetic fields (< 0.1 G) [11].
Alternatively, one could use a nano–superconducting
quantum interference device technique, which is known
to feature single-spin sensitivity [38]. Finally, we note that
odd-frequency triplet pairing has recently been predicted to
occur in S-N systems with SOC [39], where the case of
strong SOC was included. It would be of interest to study
the Meissner effect in this regime, which goes beyond the
quasiclassical approximation.
Conclusion.—To summarize, we have shown that SOC

in the normal metal fundamentally alters its Meissner
response when placed in proximity to a superconductor.
The supercurrent-induced magnetization displays aniso-
tropic behavior depending on the orientation of the applied
field and can even switch the sign. This provides a way to
control the electromagnetic response of superconducting
structures, swapping between a conventional and an inverse
Meissner response. In addition, we have shown that a
reentrant effect of the magnetic susceptibility can occur in
S-N structures in the presence of very small exchange fields
h ≪ Δ0. From our simulations, we find that, for such fields,
triplet pairing can play an important role in determining the
magnetic properties of a material when its length greatly
exceeds ξS.
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