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We generalize the Schrieffer-Wolff transformation to periodically driven systems using Floquet theory.
The method is applied to the periodically driven, strongly interacting Fermi-Hubbard model, for which we
identify two regimes resulting in different effective low-energy Hamiltonians. In the nonresonant regime,
we realize an interacting spin model coupled to a static gauge field with a nonzero flux per plaquette. In the
resonant regime, where the Hubbard interaction is a multiple of the driving frequency, we derive an
effective Hamiltonian featuring doublon association and dissociation processes. The ground state of this
Hamiltonian undergoes a phase transition between an ordered phase and a gapless Luttinger liquid phase.
One can tune the system between different phases by changing the amplitude of the periodic drive.
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The Schrieffer-Wolff transformation (SWT) [1-4] is a
generic procedure to derive effective low-energy
Hamiltonians for strongly correlated many-body systems.
It allows one to eliminate high-energy degrees of freedom
via a canonical transform. The SWT has proven useful for
studying systems with a hugely degenerate ground-state
manifold, such as the strongly interacting limit of the
Fermi-Hubbard model (FHM) [2], without resorting to
conventional perturbation theory.

Treating interactions in such a nonperturbative way is
difficult in periodically driven systems [5—10], which have
received unprecedented attention following the realization
of dynamical localization [11-15], artificial gauge fields
[16-22], models with topological [23-28] and state-
dependent [29] bands, and spin-orbit coupling [30,31].
In this Letter, we consider strongly interacting periodically
driven systems and show how the SWT can be extended
to derive effective static Hamiltonians of nonequilibrium
setups. The parameter space of such models, to which we
add the driving amplitude and frequency, opens up the door
to new regimes. We use this to propose realizations of
nontrivial Hamiltonians, including spin models in artificial
gauge fields and the Fermi-Hubbard model with enhanced
doublon association and dissociation processes.

SWT from the high-frequency expansion.—Intuitively,
the high-frequency expansion (HFE) for periodically driven
systems and the SWT share the same underlying concept:
they allow for the elimination of virtually populated high-
energy states to provide a dressed low-energy description,
as illustrated in Fig. 1. For a system driven off resonantly
[Fig. 1(a)], virtual absorption of a photon renormalizes
tunneling.  Similarly, nondriven fermions develop
Heisenberg interactions via off-resonant (virtual) tunneling
processes [Fig. 1(b)]. In this Letter we combine the HFE
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and SWT into a single framework allowing one to treat
both resonantly and nonresonantly driven systems on equal
footing. Let us illustrate the connection by deriving the
SWT using the HFE. Consider the nondriven FHM:

H:_JOZCIGCjU_FUanTnJl’ (1)
(ij).o J

where J is the bare hopping and U is the fermion-fermion
interaction. We are interested in the strongly correlated
regime J, < U. Going to the rotating frame [yp™'(7)) =
Vi(#)|y(t)) with respect to the operator V(t) =
exp(—iUt)_;njin;,) eliminates the energy U in favor of
fast oscillations. If id,[y™") = H™'(¢)|w™"), then

H™(1) = _JOZ [gijo' + (eiU’h:»Lj,, +H.c.)],
(ij).o

- :
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Gijc = (1- ni&)cjncjo’(l - nj&) + nit':cj-ncjanjz‘rv (2)

where 1 = | and vice versa. The first term g; o models the

hopping of doublons and holons, while the second term thjﬁ
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FIG. 1. Similarity between renormalization of tunneling, an
interference effect induced virtually by an off-resonant drive (a),
and Heisenberg interactions induced by virtual off-resonant
interaction processes (b).
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represents the creation and annihilation of doublon-holon
pairs. Since H™'(¢) is time periodic with frequency U, we
can apply Floquet’s theorem [32]. Thus, the evolution of
the system at integer multiples of the driving period 7 =
2z/U (i.e., stroboscopically) is governed by the effective
Floquet Hamiltonian H.;. If we write H™'(r) =
S HR' eVl the HFE gives an operator expansion for
He = HY' + >, o[HS, HOU /€U + O(U™2)  [33-38].

The zeroth-order term H iff) = Hy" is the period-averaged
Hamiltonian (here the doublon- holon hopping ¢), while
the first-order term is proportional to the commutator

H'}) ~ 12[n*, b/ U, cf. Fig. 1(b):
47,
effN_JOZgl]{f OZ<S S > (3)
(ij).o

This effective Hamiltonian is in precise agreement with the
one from the standard SWT [39]. At half filling, doublons
and holons are suppressed in the ground state and this
reduces to the Heisenberg model. Away from half filling
this Hamiltonian reduces to the ¢ — J model [2,40].

Using the HFE to perform the SWT offers a few
advantages: (i) the SW generator comes naturally out of
the calculation, (ii) one can systematically compute higher-
order corrections [33—-38,41], and (iii) the HFE allows for
obtaining not only the effective Hamiltonian but also the
kick operator, which keeps track of the mixing between
orbitals and describes the intraperiod dynamics [34,41].
This is important for identifying the fast time scale
associated with the large frequency U in dynamical mea-
surements [42] and expressing observables through creation
and annihilation operators dressed by orbital mixing [41].

Generalization to periodically driven systems.—The
HFE allows us to extend the SWT to time-periodic
Hamiltonians. Related approaches have been used to study
noninteracting Floquet topological insulators [43] and
ultrafast dynamical control of the spin-exchange coupling
[44] in fermionic Mott insulators [45]. Let us add to the
FHM an external periodic drive:

= —JOZCM Cjo + UZ”/T"Ji + Zf/" Jjo* 4

The driving protocol f,(t) with frequency Q encompasses
experimental tools such as mechanical shaking, external
electromagnetic fields, and time-periodic chemical poten-
tials, relevant for the recent realizations of novel Floquet
Hamiltonians. In the following, we work in the limit
Jo < U,Q and assume that the amplitude of the periodic
modulation also scales with Q [41].

Since both the interaction strength U and the driving
amplitude are large, we go to the rotating frame with

respect to V(1) = Ui mi D Fiemial G here
= ["fj,(t)dr'. The drive induces phase shifts to
the hopping:

Hrot( _ _JOZ zéFu,, Gijo + ( i[6F (1 +U’]h —|— H.c. )]
(ij).o

where 6F;,(t) = F;,(t) — F,(t). Notice that now there
are two frequencies in the problem: U and Q. Hence,
H™'(¢) is not strictly periodic in either. To circumvent this
difficulty, we choose a common frequency Q, by writing
Q=kQy and U =1Q,, where k and [ are co-prime
integers. Then H™'(¢) becomes periodic with period
Tq, =2m/€), and we can proceed using the HFE.
Alternatively, before going to the rotating frame, we could
decompose the interaction strength as U = [Q + 6U, where
oU acts as a detuning, and can continue without including
the term proportional to U in V(r).

Nonresonant driving.—Let us first assume k, [ > 1 such
that resonance effects can be ignored We begin by Fourier

expanding the drive ¢®firl) =3, A e If opposite

spin species are driven out of phase we have A,(ﬂ-z =

(A( )) Similarly, flipping the direction of the bond flips

ijo
the sign of §F, so Aﬁm) = (ASN)) We now apply the
generalized SWT with frequency €. At half filling and for
off-resonant driving double occupancies are suppressed,

and the dominant term in the effective Hamiltonian is

H' eff = solHY, H™]/ Q0. Two types of commutators
occur in this sum: the first comes from terms that have no
oscillation with frequency U, giving commutators of the

form >, NASQ Gijor Zi/Ai/OJAS,?a, gi'y»']; all of these commu-
tators vanish. The second type are the same commutators
relevant for the SWT, [}, A Whjja, Zi’j’a’Af’j’o-)’hj’l’G']’ but
note the presence of all higher-order harmonics induced by
the drive. These involve terms rotating with ¢/(U+7) and
thus will be suppressed by a (U + £Q) denomlnator. The

commutators are explicitly done in the Supplemental
Material [46], giving

J2
1 + o— +
H((eft? <§> U 0 20 ( ( >S S + a( s S S -+ 2ﬁ ;;a;;),

(€) — A 4=0)
where a;; Az]T i

and ﬁ |Al it 2.

One can Floquet engineer the Heisenberg model with
a uniform magnetic flux per plaquette ®; see Fig. 2. To
this end, we choose the spin-dependent driving protocol
fis(t) = clAcos (Qt + ¢;) +Qm] (cf. Fig. 2, inset),
where ¢j = ¢mn = (I)D(m + l’l), o€ {T’ ‘L} = {1’ _1}’
and we denote the square-lattice position by r; = (m,n).
Such spin-sensitive drives are realized in experiments via
the Zeeman effect using a periodically modulated [29] and
static [19,20] magnetic-field gradients which couple to
atomic hyperfine states. For this protocol,
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FIG. 2. In the presence of a spin-dependent drive off resonant
with the interaction strength U (inset), the stroboscopic physics of
the strongly driven, strongly correlated Fermi-Hubbard model is
governed by an effective spin Hamiltonian in the presence of a
gauge field.

(¢ — A _ it
A(m,n),(m,n+1)T = Ay? = el’? jf(zé’@),
14 4 i
AEm),n),(m+l.n)T = AE{T) =e (f+l)¢mns7f+l (2€®)a

where 7, is the Bessel function of the first kind, { = A/Q
is the dimensionless driving strength, and {4 =
sin(®/2) is the flux-modified strength [48].

There are two physically interesting limits. For U <« Q,
only £ = 0 survives and we get

1,
HYse = (Jg;‘f’x [S;+Lnsgm +5 (€S S +H.c.)]

ex.y 1
+Jeff} |:an.n+l ann +§(S;’n+l Sr_nn +H.C.):| ) y

where JEY = 4[J0T1/0(2(4)]*/U. For Q < U, we can
set U + [ — U and sum over [/ to obtain

QU
H eff

4J? T>(48e) | »; -
- 702 |:S’Z’”+1.nSIZnn + %QZ@W}SILH.nsmn +H.c.)

4
+ an,n+1S§1n +%(S;!HIS;M + HC) .

The exchange strengths depend on Q and U, but both
limits give spin Hamiltonians with phases along x. This
phase physically appears on the flip-flop and not the Ising
term because the drive is spin dependent. Thus, a phase
difference only occurs if the electron virtually hops as one
spin and returns as the other.

Let us discuss the regime J, < Q < U a bit more. This
spin Hamiltonian can be identified with the Heisenberg
model in the presence of an artificial gauge field with flux

® per plaquette. Whenever the S¢S interaction is small,
the Hamiltonian reduces to the fully frustrated XY model in
2D, in which one cannot choose a spin configuration
minimizing the spin-exchange energy for all XY couplings.
In the classical limit, similarly to a type-II superconductor,
the minimal energy configuration is known to be the
Abrikosov vortex lattice [49,50]. The realization of the
deep XY regime with this particular driving protocol is
limited, since |7, (4{p)| < 1, but, at finite S*S¢ interaction,
a semiclassical study showed that vortices persist and
can be thought of as half-Skyrmion configurations of the
Néel field [51-53]. Another interesting feature of the
spin Hamiltonian is that it exhibits a Dzyaloshinskii-
Moriya interaction term [54-57], D,,, - (S,i1.0 X Spn)-
The Dzyaloshinskii-Moriya coupling is spatially
dependent, polarized along the z direction D, =
sin(,,,) T 2(4¢5)M, /2, and present only along the x-lattice
direction.

Finally, let us mention that spin-1/2 systems are equiv-
alent to hard-core bosons. In this respect, H4<? and HSSY
model hard-core bosons with strong nearest-neighbour
interactions in the presence of a gauge field. For a flux
of @4 = /2 the noninteracting model has four topological
Hofstadter bands. If we then consider the strongly inter-
acting model, and half fill the lowest Hofstadter band
(S5t = —3N/8), the Heisenberg model supports a frac-
tional quantum Hall ground state [25,58-60]. Away from
half filling of the fermions, doublon and holon hopping
terms appear in the effective Hamiltonian, cf. Supplemental
Material [46], and it would be interesting to study the effect
of such correlated hopping terms [61] on this topologi-
cal phase.

Resonant driving.—Novel physics arises in the resonant-
driving regime J, <« U = [Q. To illustrate this, we choose
a one-dimensional system with the driving protocol
fis(t) = jAcosQt, which was realized experimentally
by mechanical shaking [12—14]. Unlike off-resonant driv-
ing, resonance drastically alters the effective Hamiltonian
by enabling the lowest-order term H gg: on resonance, the
doublon-holon (DH) creation or annihilation terms h'
survive the time averaging, and the leading-order effective

Hamiltonian reads

0 :
HYy = Z{_Jeffgija — Keg[(=1)Mihf, + Hel}, ()
(ij).o

where 17;; = 1 for i > j, n;; = 0 fori < j, Jogr = Jo T o(£),
and Ko = JoJ,({). The first term, g;;,, is familiar from
the static SWT, with a renormalized coefficient J ;. The
term proportional to hszn appears only in the presence of the
resonant periodic drive and is the source of new physics in
this regime. By adjusting the drive strength, one can tune
Jor and K4 to a range of values, including zeroing out
either one. Starting from a state with unpaired spins, DH
pairs are created via resonant absorption of drive photons.
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Hence, holons and doublons become dynamical degrees

of freedom governed by H i(f)f), with the Heisenberg model as

a subleading correction. The DH production rates and
further properties of the system have been investigated both
experimentally and theoretically [44,62-72]. A Dynamical
Mean Field Theory (DMFT) study found that the ac field
can flip the band structure, switching the interaction from
attractive to repulsive [73].

Such correlated hopping models have been proposed to
study high-T'. superconductivity [74-76]. To get an intu-
ition about the effect of the new terms, we use the numerical
tools Density Matrix Renormalization Group (DMRG) and
Matrix Product States (MPS) from the open-source soft-
ware Algorithms and Libraries for Physics Simulations

(ALPS) [77,78] to calculate the ground state of Hi(gg at half-
filling. The many-body gap in the thermodynamic limit A is
extracted from simulations of even-length chains with open
boundary conditions by extrapolation in the system size:
A(L) = const/L + A. We numerically confirm that the
model features a transition between a symmetry-broken
ordered phase and a gapless Luttinger liquid phase [74-76]
as follows [79]. For K¢ > J., the physics is dominated by
the DH creation or annihilation processes. In this regime,
fermions can hop along the lattice by forming and destroy-
ing DH pairs. Thus, for [ even, the ground state exhibits
bond-wave order with order parameter B; = ch} 11.6Cjot+
H.c., while the corresponding order parameter for / odd is
not yet known. This order breaks translation invariance
with a two-site unit cell, and thus yields a many-body gap
for even-length chains with open boundary conditions
(cf. Fig. 3). For K. < J., renormalization group argu-
ments show that bond ordering terms become irrelevant,
leading to a gapless Luttinger liquid [81]. At Koy = Jogy
and for [/ even, one surprisingly finds that the system is
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|
|

9
o2t -

- L
Joft Josr Kot | —Hert
|

0.1 | ]

|
0.05 : _
|
o} - w—— -8 L
0 0.2 0.4 0.6 0.8 1
Keff/ (Keﬁ + Jeff)
FIG. 3. Resonant driving of the Fermi-Hubbard model enables

doublon creation and dissociation processes (inset). The many-
body gap A shows a phase transition from a gapless Luttinger
liquid to gapped translation-invariance-broken phase. The
doublon-holon hopping and creation coefficients J.; and K g
are controlled by varying the driving amplitude.

equivalent to free fermions. The existence of such a
noninteracting point is rather striking, since it means that
a strongly driven, strongly interacting system can effec-
tively behave as if the fermions were free. This phenome-
non can be understood by noticing that double occupancies,
effectively forbidden in the absence of the drive by strong
interactions, are reenabled by the resonant driving term.
As a result, whenever the amplitude of the driving field
matches a special value to give K. = Jo, the matrix
element for creation of doublons and holes becomes equal
to their hopping rate and the effect of the strong interaction
is completely compensated by the strong driving field. We
emphasize that this is a highly nonperturbative effect since
it requires a large drive amplitude, A ~ U = IQ.

It bears mentioning that all regimes of the model are
accessible using present-day cold atoms experiments [66].
We propose a loading sequence into the ground state of

Hgf)»g in the Supplemental Material [46]. Moreover, by
tuning the frequency away from resonance, one can write
U = 06U + IQ and go to the rotating frame with respect
to the [Q term, keeping a finite on-site interaction SU in
the effective Hamiltonian. This is required if one wants to
capture important photon-absorption avoided crossings in
the exact Floquet spectrum. Including artificial gauge
fields is also straightforward in higher dimensions, see
Supplemental Material [46], and expected to produce novel
topological phases. By utilizing resonance phenomena, this
scheme only requires shaking of the on-site potentials,
which is easier in practice than other schemes that have
suggested modulating the interaction strength to realize
similar Hamiltonians [82,83].

Discussion and outlook.—It becomes clear from the
discussion above how to generalize the SWT to arbitrary
strongly interacting periodically driven models. First, we
identify the large energy scale denoted by 4 (e.g., 1 = U)
and write the Hamiltonian as H = Hy + AH| + H gy (1).
Second, we go to the rotating frame using the trans-
formation V(1) = exp[—iAtH| — i [* H ;e (1)d?] to get a
new time-dependent Hamiltonian with frequencies [84] A
and Q: H™Y(t) = V'(t)H,V(t). Finally, depending on
whether we want to discuss resonant or nonresonant
coupling, we apply the HFE to obtain the effective
Hamiltonian H.; order by order in A~' and Q~'. This
procedure will generally work if a closed-form evaluation
of H™(t) is feasible. For instance, H; can be a local
Hamiltonian or can be written as a sum of local commuting
terms. The method also works if the interaction strength is
periodically modulated [82,83,85].

Although isolated interacting Floquet systems are gen-
erally expected to heat up to infinite temperature at infinite
time [5-9,86], the physics of such systems at experimen-
tally relevant time scales is well captured by the above
effective Hamiltonians; indeed, it was recently argued that
typical heating rates at high frequencies are suppressed
exponentially [87-90], and long-lived prethermal Floquet
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steady states have been predicted [88,90-92]. In particular,
rigorous mathematical proofs [88-90] supported by
numerical studies [10] showed that the mistake in the
dynamics due to the approximative character of the HFE is
under control for the large frequencies and the experimen-
tally relevant times considered. Our work paves the way for
studying such strongly driven, strongly correlated systems.
Both the resonant and nonresonant regimes that we analyze
for the FHM yield systems directly relevant to the study of
high-temperature superconductivity. More generally, we
show that by using the generalized SWT, one can Floquet
engineer additional knobs controlling the model parameters
of strongly correlated systems, such as the spin-exchange
coupling. Our methods are readily extensible to strongly
interacting bosonic systems, as well as many other systems
under active research.
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