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Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical
liquids and solids by directly observing individual microparticles. A major problem is that the interaction
between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a
molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can
be achieved by using relatively small microparticles and properly adjusting discharge parameters. If
experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an
interaction potential resembling that of conventional liquids.
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A complex (or dusty) plasma is a plasma that contains
charged microparticles (dust) [1–9]. In laboratory complex
plasmas, the particles are typically of a few μm in diameter
and charged primarily by collection of free ions and
electrons from the plasma [2–6]. Such systems allow
experimental studies of various physical processes occur-
ring in liquids and solids by directly observing individual
particles. This idea has inspired a great deal of experiments
(see, e.g., studies of shock waves [10,11], solitons [12],
crystallization and melting fronts [13], and dislocations in
crystals [14]). In contrast to colloidal suspensions [15,16],
which can be used for similar purposes, complex plasmas
are characterized by weak damping and, therefore, allow
studying various processes on their intrinsic dynamic
time scale.
A major problem in the field of complex plasmas is that

the interaction between microparticles is generally not
molecularlike, as the pair potential does not exhibit
long-range attraction. This raises questions as to what
extent complex plasmas are suitable to study various
fundamental processes occurring in conventional liquids,
such as the liquid-vapor phase transition and critical
phenomena [17]. In isotropic complex plasmas, which
can be experimentally realized under microgravity con-
ditions [18–22], the interaction potential is believed to be
repulsive at distances of the order of the interparticle
separation [2,4,23]. Under laboratory conditions, the inter-
action potential φðrÞ is generally substantially anisotropic
and also nonreciprocal [i.e., φðrÞ ≠ φð−rÞ, actio ≠ reactio]
due to the presence of plasma flow [2,4,24]. Often, a two-
dimensional (2D) complex plasma is formed in the plane
perpendicular to the flow; in this case, the interactions in
the monolayer are reciprocal but believed to be repulsive,
too (see, e.g., the experiment of Ref. [25]).
In this Letter, we use a theoretical foundation for

calculating the pair interaction potential in the presence
of ion flow, developed by us before [26–29], to make an

easy-to-verify prediction as to how to achieve attraction
between particles in 2D complex plasmas. We argue that
this can be done in a ground-based experiment with the
most common experimental setup. No external fields need
to be applied (in contrast to Refs. [18,28]), as we predict
that the attraction can be achieved by merely adjusting
parameters such as the gas pressure, rf power, and particle
size. Our theoretical approach is robust and realistic as it is
kinetic and accounts for collisions, the non-Maxwellian
velocity distribution of ions, and the electric field that
drives the ion flow; the potential calculated using this
approach has been shown to be in excellent agreement with
direct measurements [27]. If our prediction is confirmed, it
will make it possible to use 2D complex plasmas as a model
system to study fundamental processes in 2D liquids.
Most laboratory experiments on 2D complex plasmas are

performed in an rf plasma device, where charged micro-
particles are levitated against gravity by the (time-averaged)
electric field of the (pre)sheath near the lower electrode
[2,4]. This region is characterized by the presence of strong
ion flow (with a substantially non-Maxwellian velocity
distribution) driven by the field towards the electrode
[30–33]; the field is induced in the plasma to balance
the absorption of ions and electrons on the electrode (see
Bohm criterion [30–33]). The presence of the ion flow is a
key factor determining the plasma shielding and, hence, the
interactions between microparticles. Thus, to describe the
shielding of a particle levitated in the (pre)sheath (not in the
plasma bulk), it is essential to employ the kinetic descrip-
tion for ions, incorporating the field driving the flow and an
ion-neutral collision operator:

v · ∇f þ e
m
ðEsh −∇φÞ · ∂f∂v ¼ St½f�; ð1Þ

∇ ·Esh −∇2φ ¼ e
ϵ0

�Z
fdv − ne þQδðrÞ

�
: ð2Þ
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Here, fðr; vÞ is the ion distribution function, Esh is the
unperturbed (pre)sheath field, which is generally a function
of the vertical coordinate, φðrÞ is the potential perturbation
due to the charged particle, St½f� is the ion-neutral collision
operator,Q is the particle charge, e is the elementary charge
(ions are assumed to be singly ionized), m is the ion mass,
and ε0 is the permittivity of free space. The electron density
ne is assumed to either have the Boltzmann response,
δne ¼ neeφ=Te, where Te is the electron temperature, or,
as a particular case, to be unperturbed by the particle at all,
which corresponds to the limit of infinitely large Te. Note
that we neglect ionization, as the latter is expected to have
little effect on the interparticle interactions, at least at
pressures we will consider [34].
The principal assumption of our present approach is the

homogeneous plasma approximation, in which all unper-
turbed (by the particle) quantities do not depend on the
vertical coordinate. This is a common assumption, and we
have recently shown it to be quite accurate to describe the
shielding at moderate distances, particularly in the direction
perpendicular to the flow [35]. Thus, the steady state in our
model is determined simply by the balance of the electric
field and collisions, ðeEsh=mÞ · ∂f=∂v ¼ St½f�. To calcu-
late φðrÞ, we use the linear perturbation approximation
[2,4,26,27,35]; i.e., we linearize Eqs. (1) and (2) with
respect to the perturbations induced by the particle.
Cold-neutral approximation.—Since in many experi-

ments the ion flow velocity at the levitation height of
the 2D crystal significantly exceeds the neutral thermal
velocity, we start our analysis with the cold-neutral
approximation:

St½f� ¼ −
vfðvÞ
l

þ δðvÞ
l

Z
fðv0Þv0dv0; ð3Þ

where δðvÞ is the delta function. The collision length l is
assumed to be velocity independent, which is a quite
accurate approximation for superthermal flow velocities
and noble gases (typical for experiments with 2D complex
plasmas). The dominant collision mechanism in this
case is charge transfer [36], which is characterized by a
weak (logarithmic) velocity dependence of its cross
section [36,37].
The corresponding form of the potential is derived in

Ref. [27] and given by Eq. (6) of that paper. The inclusion
of the electron response results in addition of the term

τl ¼ eEshl=Te ð4Þ
to the numerator under the square root in the above
equation. The potential essentially depends on two dimen-
sionless numbers, τl and

ζl ¼ λ=l; ð5Þ
where

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0Eshl
ne

r
; ð6Þ

and n is the ion density. Let us analyze this potential in the
plane perpendicular to the flow.
We start with the asymptotic expressions for small and

large distances. At small distances, the potential obviously
becomes the Coulomb potential, φ ¼ Q=ð4πε0rÞ. It is
easy to show that for τl ¼ 0, the corresponding range of
distances is r≲ λζ1=3l for ζl ≪ 1, and r≲ λζl for ζl ≫ 1.
At larger distances, the potential exhibits a power-law
decay,

φ ¼ Qλ2
ffiffiffi
2

p

48πε0r3
ð60ζ2l − 1Þ þOðr−4Þ: ð7Þ

However, numerical calculations show that this asymptotic
behavior is reached only at very large distances (e.g.,
r ∼ 103λ) and that a finite τl changes the power-law decay
to an exponential decay. Nevertheless, Eq. (7) is helpful in
that it already demonstrates the principal possibility of
attraction at low collisionality (small ζl).
Figure 1 shows the results of our numerical analysis of

the potential. In the absence of the electron response
(τl ¼ 0), the potential is repulsive at small distances
and attractive at large distances for ζl < 0.13. For
0.13 < ζl < 0.24, there is attraction at intermediate dis-
tances and repulsion at small and large distances, while for
ζl > 0.24, the potential is repulsive at all distances. In the
presence of the electron response, our calculations show
that the potential has an attractive well when

ζl <
0.067

τl þ 0.28
: ð8Þ

For τl ≤ 2, this condition is accurate to less than 5%.
Role of a finite neutral temperature.—Before we analyze

Eq. (8) in terms of experimental parameters such as the gas
pressure, plasma density, and particle size, let us first
address the role of a finite neutral temperature. Accurately
doing so requires cumbersome velocity calculations, but, to
probe into the principal effect, we simplify the problem by
employing the model Bhatnagar-Gross-Krook (BGK) col-
lision operator,

St½f� ¼ −νfðvÞ þ νΦMðvÞ
Z

fðv0Þdv0; ð9Þ

where

ΦMðvÞ ¼
1

ð2πv2TÞ3=2
exp

�
−

v2

2v2T

�
ð10Þ

is the normalized Maxwellian velocity distribution of
neutrals, ν is the (velocity-independent) collision
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frequency, and vT ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Tn=m

p
is the thermal velocity of

neutrals. The corresponding potential is given in Ref. [26]
and depends on three dimensionless parameters:

τν ¼ mv2fl=Te; ð11Þ

ζν ¼ ν=ωP; ð12Þ

and

u ¼ vfl=vT; ð13Þ

where vfl ¼ eEsh=ðmνÞ is the flow velocity and ωP ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne2=ðε0mÞ

p
is the ion plasma frequency. In certain

situations (see below), it is convenient to employ the
temperature ratio

τn ¼ Tn=Te ð14Þ

instead of using τν.

In the limit of cold neutrals, vT → 0 (or u → ∞), the
potential (in the plane perpendicular to the flow) given by
the BGK model almost matches the one given by the
constant-collision-length model, provided that the param-
eters are properly rescaled. Figure 2 shows that while the
potential curves differ considerably when τl and τν are
chosen to be the same, changing any of these parameters by
about 30% results in almost perfect matching of the curves.
For τν ¼ 0, the potential at large distances is

φ ¼ Qv2flðζ2ν − 2Þ
4πε0ω

2
Pr

3
þOðr−4Þ: ð15Þ

That is, a similar r−3 dependence is recovered as in the
constant-collision-length case.
For finite τν (or τn), the far-field potential at small flow

velocities (u ≪ 1) is

φðrÞ ¼ Qτnζ
2
νu2

8πε0rð1þ τnÞ3

þQλ2nu2ðζ2ν − 2 − 2τnζ
2
ν þ 2τ2nÞ

4πε0r3ð1þ τnÞ4

þO

�
u4

r3

�
þO

�
u2

r4

�
þO

�
1

r
exp

�
−

r
λn

��
; ð16Þ

where

λn ¼
ffiffiffiffiffiffiffiffiffiffi
ε0Tn

ne2

r
; ð17Þ

and O refers to the limit u → 0, r → ∞. Equation (16)
shows that at very large distances, the potential is
always repulsive and Coulomb-like. However, since in

(a)

(b)

FIG. 1. Potential in the plane perpendicular to the flow,
calculated in the constant-collision-length model under the
cold-neutral approximation. Here, the potential and distance
are normalized by Q=ð4πε0λÞ and λ, respectively. (a) The limit of
absence of the electron response (τl ¼ 0) plotted for various ζl.
(b) Effect of a finite electron response (for ζl ¼ 0.1 and
various τl).

FIG. 2. Comparison of the constant-collision-length model
(solid lines) with the BGK model (dashed lines), both under
the cold-neutral approximation. For the constant-collision-length
model (ζ ¼ ζl and τ ¼ τl), the potential and distance are
normalized by Q=ð4πε0λÞ and λ, respectively. For the BGK
model (ζ ¼ ζν and τ ¼ τν), the potential and distance are
normalized by QωP=ð4πε0vflÞ and vfl=ωP, respectively.
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experiments τn ∼ 10−2, the first term is significant only at
very large distances; in the second term, the small param-
eter τn plays little role, so the attraction occurs for ζν <

ffiffiffi
2

p
.

Note that for τν ¼ 0, the potential (16) reduces exactly to
Eq. (15); that is, we get the same far-field potential for small
and large flow velocities.
In Fig. 3 we demonstrate that the attraction is present for

various realistic combinations of u, ζν, and τν.
Thus, since a finite neutral temperature does not suppress

the attraction, it seems safe to say that all what is needed to
achieve the attraction in an experiment is to satisfy the
condition (8), provided that the flow velocity substantially
exceeds the thermal velocity, i.e., eE0l ≫ Tn.
It is noteworthy that in the BGK model, the plasma is

unstable with respect to the formation of ion kinetic waves
when both ζν ≲ 0.3 and u≳ 8; otherwise, the plasma is
stable [29]. Thus, the attraction emerges before the insta-
bility sets in (i.e., before the model itself becomes physi-
cally unmeaningful).
We also note that the attraction disappears in the limit

ζν → 0, as in this case, the potential well moves to r → ∞
and becomes infinitely weak, which indicates that colli-
sions are essential for the attraction. Mathematically, the
limit ζν → 0 implies infinitely small Esh and ν but a finite
ratio of these (and, thus, a finite flow velocity). In this limit,
the far-field potential at small flow velocities can be
analytically shown to be

φðrÞ ¼ Qλ2nu2

4πε0r3

�
2

ð1þ τnÞ2
−

π

2ð1þ τnÞ3
�
þ…; ð18Þ

where … are the same O terms as in Eq. (16). The term in
the square brackets is always positive, so there is always
repulsion at large distances. We have numerically verified
that the potential remains repulsive at all distances and

finite flow velocities as long as the limit ζν → 0 is
considered.
Experimental conditions for attraction.—To convert ζl

and τl into experimentally controllable parameters, we use
the vertical force balance, −QEsh ¼ Mg (neglecting the ion
drag force [2,4]), where M is the particle mass. This yields

ζl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρa2Pgσ
3nzTeTn

s
ð19Þ

and

τl ¼ ρa2ge2Tn

3ε0PzT2
eσ

; ð20Þ

where a is the particle radius, P is the gas pressure, ρ is the
particle material density, z ¼ −Qe=ð4πε0aTeÞ is the nor-
malized particle charge, usually of the order of unity [4],
and σ is the ion-neutral cross section.
By analyzing the condition for attraction [Eq. (8)]

together with Eqs. (19) and (20), we find it rather restrictive
but quite possible to satisfy. For instance, for the parameters
of the experiments of Ref. [38], namely, P ¼ 0.66 Pa,
ρ ¼ 1510 g=cm3, Te ¼ 2.5 eV, n ∼ 2 × 109 cm−3, and
Tn ¼ 300 K, the attraction should occur when the particle
diameter 2a is less than about 4.8 μm. (This critical size
corresponds to ζl ≃ 0.035 and τl ≃ 1.6; to calculate this
size, we assumed z ¼ 3 [2,4] and σ ¼ 6.5 × 10−15 cm2

[27].) This is quite a realistic size, as the above experiments
were performed with particles of 3.4– 8.8 μm in diameter.
Note that the plasma density in the experiment of Ref. [38]
was measured in the bulk of the discharge, not at the
levitation height, but this should not affect estimates. Also
note that for the above-calculated critical size, the flow
velocity at the levitation height is about 10 times the
thermal velocity of neutrals, so the cold-neutral approxi-
mation should indeed be applicable. We have also calcu-
lated, in the cold-neutral approximation, that the use of
2 μm particles would result in a potential well located at
about ≃0.13 mm with the depth ∼300Tn, i.e., a deep
potential well close to the particle.
While this Letter focuses on the regime where the flow

velocity is much larger than the thermal one, we should
note that this is probably not necessarily required for the
attraction. Indeed, in the opposite limit u ≪ 1, the BGK
model still yields the attraction [see Eq. (16)]. Note that in
this regime, the dominant collision mechanism is elastic
scattering, which is not accurately described by the BGK
operator, so the attraction is not guaranteed. The attraction
condition ζν <

ffiffiffi
2

p
becomes

σP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε0
2n0e2Tn

r
< 1; ð21Þ

which can be very easily satisfied. For example, for n ¼
109 cm−3 and T ¼ 300 K, Eq. (21) yields P < 240 Pa.

FIG. 3. Potential for the BGK model and finite realistic values
of u, ζν, and τn. The potential and distance are normalized as in
Fig. 2. (a) u ¼ 6, ζν ¼ 0.05, τn ¼ 10−2. (b) u ¼ 4, ζν ¼ 0.2,
τn ¼ 10−2.
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However, the condition u ≲ 1 represents a stronger restric-
tion: By using −QEsh ¼ Mg, we rewrite it as

ρa2ge2

3ε0PTezσ
≲ 1: ð22Þ

For 2a ¼ 3 μm, Te ¼ 2.5 eV, ρ ¼ 1510 g=cm3, z ¼ 3,
and Tn ¼ 300 K, this condition yields P≳ 40 Pa, which
is quite a realistic pressure for experiments with complex
plasmas. Larger particles, however, would require a larger
pressure to satisfy the condition u ≲ 1.
To conclude, we have theoretically shown that it is

possible to obtain a molecularlike interaction potential in
2D complex plasmas by using relatively small particles and
properly adjusting discharge parameters. We hope that our
results will stimulate experimental work in this direction. If
experimentally confirmed, the interparticle attraction will
make it possible to employ complex plasmas as a model
system with an interaction potential resembling that of
conventional liquids.
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