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Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA and a
traditional accelerator component is a critical issue for emittance preservation. The drastic differences of the
transverse focusing strengths as the beam propagates between stages and components may lead to a
catastrophic emittance growth even when there is a small energy spread. We propose using the linear
focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to control phase
space matching between sections with negligible emittance growth. Several profiles are considered and
theoretical analysis and particle-in-cell simulations show how these structures may work in four different
scenarios. Good agreement between theory and simulation is obtained, and it is found that the adiabatic
approximation misses important physics even for long profiles.
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In the 20th century, particle accelerators have played a
very important role in the advancement of modern physics
[1]. Today, accelerators such as the Large Hadron Collider
[2] and the Linac Coherent Light Source [3] are pushing the
frontiers of our knowledge about the origin and complexity
of matter. These machines, however, are becoming too
large and expensive, giving impetus to research on
advanced particle acceleration schemes that may lead to
more compact and efficient alternatives to the present
technology [4]. One such approach, plasma-based accel-
eration, has been intensely studied and has made significant
recent progress towards both high-gradient and high-
efficiency acceleration [4–12]. There is, however, another
important challenge in the development of plasma-based
accelerators (PBAs) that has only recently been discussed
[13–16] and has been hitherto little explored [17,18]; this is
to match the beam out of the plasma into another accel-
erator component without spoiling the beam’s emittance.
Emittance preservation is imperative to maintaining the
beam’s brightness and luminosity for coherent light source
and collider applications [2,3]. This is part of the rapidly
emerging area of basic physics research on manipulating
the six-dimensional phase space of high-energy density
particle beams.
In this Letter, we show through both analytical solutions

as well as OSIRIS [19] particle-in-cell (PIC) simulations that,
using plasmas that have longitudinally tailored density
profiles as matching sections, it is possible to transport the
electron beam to or from the PBA sections without
significant emittance growth using ion channel focusing
forces which arises in the nonlinear blowout regime [20–

22]. We investigate several density profiles, how to match
the Courant-Snyder (CS) parameters β and α [23] between
the two stages that require beam matching, and exact and
adiabatic matching.
The use of tailored density profiles and linear wakes to

couple the particle beam into or from a PBA stage has been
previously suggested, but only in the adiabatic limit
[17,18]. Our Letter greatly extends this work while also
revealing unexpected physics. We consider five profiles
with arbitrary length. We study the evolution of both β and
α, show that perfect matching can be obtained for short
sections (nonadiabatic profiles), and show that the adiabatic
approximation (for long profiles) misses important physics.
Furthermore, we consider nonlinear wakes [21,22] instead
of linear wakes, because linear wakes have nonlinear and
axial-dependent focusing forces and focusing forces which
are altered by beam loading [24] (i.e., dephasing would be
an issue).
We consider four examples in which it will be important

to achieve beam matching between two stages where at
least one stage is a PBA. The first configuration is the so-
called injector accelerator, where a ∼100 MeV class
electron beam produced by a short, high-density injector
stage is further accelerated to ∼GeV level using a second
low-density accelerator stage [11,25,26]. The second
example is the external injection scheme where a high-
quality, relativistic electron bunch is first generated using a
rf accelerator and then injected into a PBA [27–31]. The
third example concerns the proposed PBA-driven light
source [32–34], where a high-quality electron beam needs
to be coupled from the plasma wake to an undulator. The
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last configuration is for the recently developed collider
concepts based on linking together many PBAs [35,36].
Each stage (with a separate driver) provides a gain of about
10 GeV. In the latter three cases, a magnetic focusing optic
will be needed to couple the beam from one stage into or
from the PBA.
In the above scenarios, the beam exiting one stage

needs to be coupled into the next stage that may have a
drastically different field-focusing strength. In traditional
accelerators, solenoids and quadrupoles are typically
combined to guide the transverse motion of the particles
between the stages. However, due to an ultrahigh
focusing gradient in the nonlinear plasma wake
(G½MT=m�≡ Fr=ecr ≈ 3.01np½1017 cm−3�), state-of-the-
art quadrupoles (G ∼ 103 T=m) [37,38] are not strong
enough to confine the transverse motion of the particles
between the stages. Here Fr is the transverse focusing force
in the direction r and np is the plasma density. As a result,
beams will experience orders of magnitude transverse size
variation when propagating between the PBA and the
conventional focusing optic, and the particles’ transverse
motion will become very sensitive to the energy spread of
the bunch; i.e., particles with different energy will undergo
transverse betatron oscillations with different betatron
phases, leading to a catastrophic emittance growth [13–16].
The transverse normalized emittance, which is a

figure of merit for the beam quality, is defined as
ϵn ¼ ð1=mcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihp2

xi − hxpxi2
p

, where hi represents an
ensemble average over the beam distribution, x is the
transverse position, and px is the transverse momentum.
The phase space distribution is described by the CS
parameters β, α, and γ [23] where β ¼ hx2i=ϵ,
α ¼ −hxx0i=ϵ, γ ¼ hx02i=ϵ, where x0 ¼ dx=dz ¼ px=pz

is the slope of the particle trajectory, ϵ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihx02i − hxx0i2

p
is the geometric emittance, β is a

measure of the beam size, α represents the correlation
between x and x0 (e.g., at beam waist α ¼ 0), and γ is a
measure of the spread in the particle slopes. The CS
parameters satisfy the relationship βγ ¼ 1þ α2. In typical
cases, the CS parameters of a matched electron beam in
the PBAs are determined by the field structure inside
the nonlinear wake as βp ¼ ffiffiffiffiffiffiffiffiffiffiffi

2hγbi
p

k−1p , αp ¼ 0, where
hγbi is the average value of the relativistic factor of
the beam.
It is straightforward to obtain the emittance evolution

when a relativistic beam drifts in free space as

ϵnðzÞ ¼ hpziϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂2γb ½ðγiz − αiÞ2 þ 1� þ 1

q
, where σ̂γb ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hp2
zi − hpzi2

p
=hpzi is the relative energy spread of the

beam, and the geometric emittance ϵ remains constant in
free space [13,14]. Here subscript “i” refers to the input or
initial quantity. When the relativistic beam propagates in
focusing elements, the emittance evolution is determined
by the detailed configurations of the quadrupoles or the
field structure in the plasma wake. For the simple case

where a linear focusing force Fr that is constant in z is
present, the emittance grows and finally saturates when the
beam is not matched and there is any initial or induced
energy spread.
Now we consider the situation shown in Fig. 1(a), where

both Fr and accelerating field Ez are present. Here an
electron bunch of hγb;ii ¼ 200 with an initial energy spread
σ̂γb ¼ 0.01 is produced in a 1019 cm−3 injector stage
(βi ¼ 33.7 μm, αi ¼ 0). It then propagates 0.5 mm in
vacuum (βv ≈ 220βi, αv ≈ −15) before entering a lower
density (1017 cm−3) acceleration stage, with no attempt
made to match the beam between the two stages. Further
energy spread is induced by the acceleration gradient that
varies uniformly between ½Ez − ΔEz

=2; Ez þ ΔEz
=2�. We

solve the transverse motion equation numerically for many
test particles to plot the evolution of the emittance as solid
lines in Fig. 1(a) for twodifferent values ofΔEz

. Catastrophic
emittance growth by more than a factor of 15 is seen.
It is also possible to obtain an analytical expression for

the projected emittance. Following the derivation in
Ref. [16] for cases where all particles are initialized at
the same zi leads to

ϵn ¼ ϵn;sat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðγiβF þ βi=βFÞ2 − 4

ðγiβF þ βi=βFÞ2
�
sinΔΦ
ΔΦ

�
2

s
; ð1Þ

where ϵn;sat ≈ ϵn;iðγiβF þ βi=βFÞ=2 [15] and βF ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihγbimc=Ge
p

is the average beta function of the beam
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FIG. 1. (a) The emittance evolution of an electron beam
(hγb;ii ¼ 200) from a high-density plasma injector as it prop-
agates in a low-density plasma accelerator. The emittance
evolution for two different values of ΔEz

and Ez ¼ 1, where
Ez is normalized by mcωp;acc=e and ωp;acc is the plasma
frequency in the accelerator. The inset shows the relative position
of the bunch within the nonlinear accelerating cavity. (b) The
concept of matching using a longitudinally tailored plasma
profile. The beam to be accelerated in a PBA is focused at the
entrance of a plasma density ramp for matching and injected into
a fully “blown-out" wake produced by either a laser pulse or an
electron bunch (driver bunch).
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within the focusing element. Here Φ is the electron betatron
phase advance and is assumed to be uniformly distributed
over ΔΦ. If the particles are not being accelerated,
Φ ¼ z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γbmc=Ge

p
; if the particles are being accelerated,

then Φ ¼ ð ffiffiffiffiffiffiffi
2γb

p
−

ffiffiffiffiffiffiffiffiffi
2γb;i

p Þ=Ez and βF in Eq. (1) corre-
sponds to the value when the beam enters the focusing
element. The emittance growth from Eq. (1) using the
values for γ and β at the end of the vacuum section as the
initial values is plotted as dashed lines in Fig. 1(a);
excellent agreement with the numerical results can be seen.
As seen from the above example, the emittance of the

beam will grow quickly as the beam propagates if it has a
finite energy spread and is not matched between the
focusing elements. However, by using a plasma that has
a specific longitudinal density profile (matching section),
one can guide the beam through the two stages with
negligible emittance growth. The proposed density-profile
matches the initial βi of the bunch to the βgoal of the PBA or
to the external focusing elements by providing a contin-
uously varying focusing force to transport the bunch from
its waist (αi ¼ 0) at the exit of the first stage to another
waist (αgoal ¼ 0) at the end of the matching section [see
Fig. 1(b)]. In all four cases mentioned earlier, it is possible
to match the beam from one stage into another using this
technique, while preserving the beam emittance.
Take density downramp as an example: we start with the

equation for the transverse motion of a single electron in the
blowout regime (linear focusing force) in the ramp,

d2x
dz2

þ KðzÞx ¼ 0; ð2Þ

where KðzÞ ¼ np0fðzÞe2=ð2γbmc2ϵ0Þ ¼ fðzÞβ2p0, np0 is
the peak density at the beginning of the matching plasma,
and fðzÞ is the normalized plasma density profile. We also
assume that the beam is in a region where there is negligible
acceleration in the matching section. We can normalize all
the lengths to βp0; then, Eq. (2) can be expressed as
d2x̂=dẑ2 þ fðẑÞx̂ ¼ 0, where x̂ ¼ x=βp0, ẑ ¼ z=βp0. We
have found solutions to Eq. (2) for the five different density
profiles shown in Fig. 2. As we will show, the profile with
the best matching properties is fðẑÞ ¼ 1=ð1þ ẑ=l̂Þ2, so we
analyze this case in more detail. For this profile (when
l̂ > 1=2) the solution to Eq. (2) is

x̂ ¼ c1
ffiffiffi
ξ

p
cosΦþ c2

ffiffiffi
ξ

p
sinΦ; ð3Þ

x̂0 ¼ c1ffiffiffi
ξ

p
�
cosΦ
2

− s sinΦ

�
þ c2ffiffiffi

ξ
p

�
sinΦ
2

þ s cosΦ

�
; ð4Þ

where ξ ¼ ẑþ l̂, s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l̂2 − 1=4

q
, Φ ¼ s ln ξ is the betatron

phase advance of the electron, and c1, c2 are constants
determined by the initial conditions for x̂ and x̂0.
Equations (3) and (4) can then be used to obtain the

mapping
� x̂
x̂0
�
¼ Mðẑj0Þ

� x̂i
x̂0i

�
, which defines the trans-

port matrix. The elements of the transport matrix can be
used to express the CS parameters at ẑ in terms of their
initial values [23],

β̂l̂ðẑÞ ¼ M2
11β̂i − 2M11M12αi þM2

12γ̂i; ð5Þ

αl̂ðẑÞ ¼ −M11M21β̂i þ ðM11M22 þM12M21Þαi
−M12M22γ̂i ð6Þ

A given matching section has a length zmax ≡ L̂. For a
selected L̂ the output β and α will depend on l̂. There will
be an optimum l̂ such that the emittance growth is
minimized within the target section which has a beta
function βgoal. To obtain the optimum l̂ we minimize
ϵn;sat=ϵn;i ¼ ½γ l̂ðẑÞβgoal þ βl̂ðẑÞ=βgoal�=2 for fixed ẑ ¼ L̂,
and βgoal. Here the subscript “goal” refers to the final
desired quantity. We use Eqs. (5) and (6) to obtain β̂l̂ðẑÞ and
α̂l̂ðẑÞ for given initial CS parameters.
Solutions to Eq. (2) can be found for the five profiles

listed in Fig. 2(b) by, e.g., using Mathematica [39]. These
solutions can be used to find the appropriate transport
matrix for each case. In Fig. 2(a) we plot the evolution of
the β and α functions based on these transport matrices for
four of the five profiles with l̂ ¼ 5 where the adiabatic
approximation should be reasonable. For the exponential
and ½1þ ẑ=ð2l̂Þ�−4 profiles, the β function deviates from the
adiabatic solution for large ẑ. For other profiles, the β and α
functions given by the adiabatic approximations are
close to the average value of the analytical curves, but
there is small oscillations about the average. This
oscillatory behavior can never be obtained from the
lowest-order adiabatic approximation, and it is critical
for perfect matching. It is important to note that because
dβ=dz ¼ −2α the results are less sensitive to L̂ when α is
near zero. In Fig. 2(b) we present optimum ϵn;sat=ϵn;i vs L̂

100
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FIG. 2. The performance of the matching plasma with different
density profiles. (a) The evolution of the CS parameters when
l̂ ¼ 5. Thick and thin lines represent β functions and α functions.
The colors correspond to the profiles listed in (b). Solid lines are
from the analytical solutions and the dashed lines are based on
adiabatic approximations where β̂ ¼ fðzÞ−1=2. (b) For each L̂, l̂ is
scanned to find the optimized value. The parameters are β̂i ¼ 1,
αi ¼ 0, β̂goal ¼ 20, αgoal ¼ 0, and the case is of a transition from a
PBA to a magnetic optics.

PRL 116, 124801 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

25 MARCH 2016

124801-3



for a particular βgoal, βi, and αi for each of the five density
profiles. The red [fðẑÞ ¼ 1̂=ð1þ ẑ=l̂Þ2] and black
[fðẑÞ ¼ 1=ð1þ 2ẑ=l̂Þ] curves are of particular interest,
because for discrete values of L̂ an optimum l̂ can be
found which provides exact matching conditions. These are
shown as squares and circles. Furthermore, the red curve
has nearly perfect matching for all L̂ > 10.
When matching from a positive phase space ellipse

(i.e., α ¼ 0) to another positive phase space ellipse, for the
fðẑÞ ¼ 1=ð1þ ẑ=l̂Þ2 density profile, the parameters for
exact matching can found analytically,

l ¼ βp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðN þ 1Þπ
ln βgoal=βi

�
2

þ 1

4

s
;

L
l
¼

�
βgoal
βi

− 1

�
; ð7Þ

where N ¼ 0; 1; 2;… for the profile with
fðẑÞ ¼ 1=ð1þ 2ẑ=l̂Þ, it is difficult to give an analytical
solution of the parameters for exact matching; however, for
when l̂ ≪ 1, we have found the fitting formulas give near
perfect matching:

l ≈ ð1.7þ NÞβp0ðβgoal=βiÞ−0.55
L
l
≈ ½0.71þ ð0.75þ NÞπβp0=l�2 − 1: ð8Þ

We have considered cases where βgoal > βi so that a
density downramp is needed. We note that there is
symmetry between the upramp and downramp cases. For
the upramp case, βgoal=βi in Eqs. (7) and (8) should be
replaced with βi=βgoal.
Next, we verify that plasma matching sections can

provide nearly perfect matching using fully self-consistent
PIC simulations using the code OSIRIS in 3D (or 2D)
Cartesian geometry using a moving window [19]. We
consider the three examples schematically shown in
Figs. 3(a), 3(c), and 3(e). In each case, we use longitudinally
tailored plasma density structures with the ideal density
profile fðzÞ ¼ 1=ð1þ ẑ=l̂Þ2 to match the electron beam
between stages.We use a laser driver with λ0 ¼ 800 nm and
define the z axis to be the propagating direction of the drive
laser and defined z ¼ 0 at the peak of the density. The
separation of the peak intensity of the laser and density of the
electron beam is ∼6c=ωp0 in each case. Parameters specific
to each simulation are given in the figure caption.
First, we considermatching an electron beam froma high-

density plasma injector into a low-density PBA as shown in
Fig. 3(a); this is the case considered in Fig. 1(a) except now
the drift space is replaced by amatching plasma section with
final βgoal ¼ 337 μm, αgoal ¼ 0. The plasma section has
l ≈ 49 μm, L ≈ 440 μm, and N ¼ 0. The 3D simulation
has a dimension of 180k−10 × 240k−10 × 240k−10 with
900 × 1200 × 1200 cells in the x, y, and z directions,
respectively, where k0 is the wave number of the driver
laser. As can be seen in Fig. 3(b), thematching section aids in

preserving the emittance of the electron bunch at its initial
level without appreciable growth, as opposed to the case
shown in Fig. 1(a), and excellent agreement between theory
and simulation is found.
In the second case, we consider matching an electron

bunch (from an external accelerator) that is focused at the
beginning of the rising density matching section to the PBA
[see Fig. 3(c)]. We use 2D simulations with a moving
window of 1600k−10 × 3000k−10 with 8000 × 1500 cells in
the z and x directions, respectively. The electron beam with
hγbi ¼ 50, βi ¼ 5 mm, αi ¼ 0 needs to be exactly matched
to βgoal ¼ 0.12 mm, αgoal ¼ 0. We use l ≈ 0.12 mm,
L ≈ 4.8 mm, and N ¼ 0. Once again the initial beam
emittance (1165 nm) is preserved as the beam is transported
to the PBA, and excellent agreement between theory and
simulation is found.
In the third case [Fig. 3(e)] we consider coupling the

electron bunch from the PBA via the matching section into
a conventional focusing optic so that it can be injected into
an undulator. We use 2D simulations with a moving
window of 1600k−10 × 3000k−10 with 8000 × 3000 cells
in the z and x directions, respectively. We simulate
matching an electron beam leaving a plasma with
hγbi ¼ 4000, βi ¼ 1.06 mm, αi ¼ 0 out of a matching
plasma (l ≈ 1.5 mm, L ≈ 14 mm, and N ¼ 0) into a con-
ventional optic with βgoal ¼ 10.6 mm, αgoal ¼ 0. This case
is the reverse of the previous case, where the matching

FIG. 3. Schematics of staging (a) a high-density plasma injector
(1019 cm−3) and a low-density PBA (1017 cm−3), (c) a rf-based
injector and a PBA (1017 cm−3) using a magnetic optic, and (e) a
PBA (1017 cm−3) and an undulator using a magnetic optic. Panels
(b), (d), and (f) show the evolution of ϵn, β, and α of the electron
beam in the matching section for scenarios (a), (c), and (e),
respectively. For case (b), the driver laser is focused at
z ¼ −0.04 mm, with a0 ¼ 4, w0 ¼ 10 μm, τFWHM ¼ 15 fs; at
z ¼ 0 mm the electron beam is initialized with σx;y ¼ 0.17 μm,
τFWHM ¼ 5 fs, and nb ¼ 1020 cm−3; and between z ¼ 0 mm and
z ¼ 0.44 mm the beam parameters vary from hγbi ¼ 200 to 192
and σ̂γb ¼ 0.1 to 0.105. For case (d), the driver laser is focused at
z ¼ 0 mm, with a0 ¼ 3, w0 ¼ 58 μm, τFWHM ¼ 100 fs; at z ¼
−4.8 mm the electron beam is initialized with σx ¼ 10.9 μm,
τFWHM ¼ 25 fs, and nb ¼ 1016 cm−3; and between z ¼ −4.8 mm
and z ¼ 0 mm the beam parameters vary from hγbi ¼ 50 to 44.8
and σ̂γb ¼ 0.02 to 0.0225. For case (f), the driver laser is focused
at z ¼ 0 mm, with a0 ¼ 3, w0 ¼ 58 μm, τFWHM ¼ 100 fs; at
z ¼ 0 mm the electron beam is initialized with σx ¼ 0.34 μm,
τFWHM ¼ 25 fs, and nb ¼ 1018 cm−3; and between z ¼ 0 mm
and z ¼ 13.9 mm the beam parameters vary from hγbi ¼ 4000 to
3966.6 and σ̂γb ¼ 0.05 to 0.0506.
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section aids in transporting a beam with an extremely small
β in the PBA section to a much larger β needed to inject the
beam into the undulator section. In Fig. 3(f), we see very
good agreement between theory and simulation and that the
electron beam emittance is preserved. Finally we note that
matching of the beam between two PBA sections is
essentially combining the cases shown in Figs. 3(c)
and 3(e).
In conclusion, we have provided a general formalism for

controlling the CS parameters of an electron beam in a PBA
through the use of longitudinally tailored plasma sections
while operating in the nonlinear blowout regime. The
formalism applies for short or long sections where the
adiabatic approximation is reasonable.

Work supported by the National Basic Research Program
of China Grant No. 2013CBA01501, NSFC Grants
No. 11425521, No. 11535006, No. 11175102,
No. 11005063, No. 11375006 and No. 11475101,
Thousand Young Talents Program, DOE Grants No. DE-
SC0010064, No. DE-SC0008491, No. DE-SC0008316,
No. DE-SC0014260, and NSF Grants No. ACI-1339893,
No. PHY-1500630. Simulations are performed on the
UCLA Hoffman 2 and Dawson 2 clusters.

*weilu@tsinghua.edu.cn
[1] A. M. Sessler and E. J. Wilson, Engines of Discovery: A

Century of Particle Accelerators (World Scientific, Hack-
ensack, NJ, 2007).

[2] G. Aad, T. Abajyan, B. Abbott et al., Phys. Lett. B 716, 1
(2012).

[3] P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J.
Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J.
Decker et al., Nat. Photonics 4, 641 (2010).

[4] M. Litos, E. Adli, W. An, C. Clarke, C. Clayton, S. Corde, J.
Delahaye, R. England, A. Fisher, J. Frederico et al., Nature
(London) 515, 92 (2014).

[5] W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Tóth, K.
Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and
S. M. Hooker, Nat. Phys. 2, 696 (2006).

[6] I. Blumenfeld et al., Nature (London) 445, 741 (2007).
[7] S. Kneip, S. R. Nagel, S. F. Martins, S. P. D. Mangles, C.

Bellei, O. Chekhlov, R. J. Clarke, N. Delerue, E. J. Divall,
G. Doucas et al., Phys. Rev. Lett. 103, 035002 (2009).

[8] D. H. Froula, C. E. Clayton, T. Döppner, K. A. Marsh,
C. P. J. Barty, L. Divol, R. A. Fonseca, S. H. Glenzer, C.
Joshi, W. Lu et al., Phys. Rev. Lett. 103, 215006 (2009).

[9] C. E. Clayton, J. E. Ralph, F. Albert, R. A. Fonseca, S. H.
Glenzer, C. Joshi, W. Lu, K. A. Marsh, S. F. Martins, W. B.
Mori et al., Phys. Rev. Lett. 105, 105003 (2010).

[10] X. Wang et al., Nat. Commun. 4, 1988 (2013).
[11] H. T. Kim, K. H. Pae, H. J. Cha, I. J. Kim, T. J. Yu, J. H.

Sung, S. K. Lee, T. M. Jeong, and J. Lee, Phys. Rev. Lett.
111, 165002 (2013).

[12] W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura,
C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E.
Mittelberger, S. S. Bulanov et al., Phys. Rev. Lett. 113,
245002 (2014).

[13] P. Antici, A. Bacci, C. Benedetti, E. Chiadroni, M. Ferrario,
A. R. Rossi, L. Lancia, M. Migliorati, A. Mostacci, L.
Palumbo et al., J. Appl. Phys. 112, 044902 (2012).

[14] M. Migliorati, A. Bacci, C. Benedetti, E. Chiadroni, M.
Ferrario, A. Mostacci, L. Palumbo, A. R. Rossi, L. Serafini,
and P. Antici, Phys. Rev. ST Accel. Beams 16, 011302
(2013).

[15] T.Mehrling, J. Grebenyuk, F. S. Tsung,K. Floettmann, and J.
Osterhoff, Phys. Rev. ST Accel. Beams 15, 111303 (2012).

[16] X. L. Xu et al., Phys. Rev. Lett. 112, 035003 (2014).
[17] K. Floettmann, Phys. Rev. ST Accel. Beams 17, 054402

(2014).
[18] I. Dornmair, K. Floettmann, and A. R. Maier, Phys. Rev. ST

Accel. Beams 18, 041302 (2015).
[19] R. Fonseca et al., Lect. Notes Comput. Sci. 2331, 342 (2002).
[20] J. B. Rosenzweig, B. Breizman, T. Katsouleas, and J. J. Su,

Phys. Rev. A 44, R6189 (1991).
[21] W. Lu, C. Huang, M. Zhou, W. B. Mori, and T. Katsouleas,

Phys. Rev. Lett. 96, 165002 (2006).
[22] W. Lu, C. Huang, M. Zhou, M. Tzoufras, F. S. Tsung, W. B.

Mori, and T. Katsouleas, Phys. Plasmas 13, 056709 (2006).
[23] S.-Y. Lee, Accelerator Physics (World Scientific, Singapore,

1999).
[24] M. Tzoufras, W. Lu, F. S. Tsung, C. Huang, W. B. Mori, T.

Katsouleas, J. Vieira, R. A. Fonseca, and L. O. Silva, Phys.
Rev. Lett. 101, 145002 (2008).

[25] A. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S.
Shiraishi, T. Sokollik, C. Benedetti, C. Schroeder, C.
Geddes, J. Van Tilborg et al., Nat. Phys. 7, 862 (2011).

[26] J. S. Liu, C. Q. Xia, W. T. Wang, H. Y. Lu, C. Wang, A. H.
Deng, W. T. Li, H. Zhang, X. Y. Liang, Y. X. Leng et al.,
Phys. Rev. Lett. 107, 035001 (2011).

[27] C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal,
W. P. Leemans, R. Williams, and C. Joshi, Phys. Rev. Lett.
70, 37 (1993).

[28] C. Clayton, M. Everett, A. Lal, D. Gordon, K. Marsh, and C.
Joshi, Phys. Plasmas 1, 1753 (1994).

[29] M. Everett, A. Lal, D. Gordon, C. Clayton, K. Marsh, and C.
Joshi, Nature (London) 368, 527 (1994).

[30] X. F. D. Stragier, O. J. Luiten, S. B. van der Geer, M. J.
van der Wiel, and G. J. H. Brussaard, J. Appl. Phys. 110,
024910 (2011).

[31] A. R. Rossi, A. Bacci, M. Belleveglia, E. Chiadroni, A.
Cianchi, G. D. Pirro, M. Ferrario, A. Gallo, G. Gatti, C.
Maroli et al., Nucl. Instrum. Methods Phys. Res., Sect. A
740, 60 (2014).

[32] H.-P. Schlenvoigt et al., Nat. Phys. 4, 130 (2008).
[33] M. Fuchs et al., Nat. Phys. 5, 826 (2009).
[34] S. Cipiccia et al., Nat. Phys. 7, 867 (2011).
[35] W. Leemans and E. Esarey, Phys. Today 62, No. 3, 44

(2009).
[36] E. Adli, J.-P. Delahaye, S. J. Gessner, M. J. Hogan, T.

Raubenheimer, W. An, C. Joshi, and W. Mori, arXiv:
1308.1145.

[37] T. Eichner, F. Grüner, S. Becker, M. Fuchs, D. Habs, R.
Weingartner, U. Schramm, H. Backe, P. Kunz, and W.
Lauth, Phys. Rev. ST Accel. Beams 10, 082401 (2007).

[38] J. Harrison, A. Joshi, J. Lake, R. Candler, and P. Musumeci,
Phys. Rev. ST Accel. Beams 15, 070703 (2012).

[39] Mathematica, version 9, 2012, http://www.wolfram.com/
mathematica/.

PRL 116, 124801 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

25 MARCH 2016

124801-5

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1038/nphoton.2010.176
http://dx.doi.org/10.1038/nature13882
http://dx.doi.org/10.1038/nature13882
http://dx.doi.org/10.1038/nphys418
http://dx.doi.org/10.1038/nature05538
http://dx.doi.org/10.1103/PhysRevLett.103.035002
http://dx.doi.org/10.1103/PhysRevLett.103.215006
http://dx.doi.org/10.1103/PhysRevLett.105.105003
http://dx.doi.org/10.1038/ncomms2988
http://dx.doi.org/10.1103/PhysRevLett.111.165002
http://dx.doi.org/10.1103/PhysRevLett.111.165002
http://dx.doi.org/10.1103/PhysRevLett.113.245002
http://dx.doi.org/10.1103/PhysRevLett.113.245002
http://dx.doi.org/10.1063/1.4740456
http://dx.doi.org/10.1103/PhysRevSTAB.16.011302
http://dx.doi.org/10.1103/PhysRevSTAB.16.011302
http://dx.doi.org/10.1103/PhysRevSTAB.15.111303
http://dx.doi.org/10.1103/PhysRevLett.112.035003
http://dx.doi.org/10.1103/PhysRevSTAB.17.054402
http://dx.doi.org/10.1103/PhysRevSTAB.17.054402
http://dx.doi.org/10.1103/PhysRevSTAB.18.041302
http://dx.doi.org/10.1103/PhysRevSTAB.18.041302
http://dx.doi.org/10.1007/3-540-47789-6_36
http://dx.doi.org/10.1103/PhysRevA.44.R6189
http://dx.doi.org/10.1103/PhysRevLett.96.165002
http://dx.doi.org/10.1063/1.2203364
http://dx.doi.org/10.1103/PhysRevLett.101.145002
http://dx.doi.org/10.1103/PhysRevLett.101.145002
http://dx.doi.org/10.1038/nphys2071
http://dx.doi.org/10.1103/PhysRevLett.107.035001
http://dx.doi.org/10.1103/PhysRevLett.70.37
http://dx.doi.org/10.1103/PhysRevLett.70.37
http://dx.doi.org/10.1063/1.870679
http://dx.doi.org/10.1038/368527a0
http://dx.doi.org/10.1063/1.3610509
http://dx.doi.org/10.1063/1.3610509
http://dx.doi.org/10.1016/j.nima.2013.10.063
http://dx.doi.org/10.1016/j.nima.2013.10.063
http://dx.doi.org/10.1038/nphys811
http://dx.doi.org/10.1038/nphys1404
http://dx.doi.org/10.1038/nphys2090
http://dx.doi.org/10.1063/1.3099645
http://dx.doi.org/10.1063/1.3099645
http://arXiv.org/abs/1308.1145
http://arXiv.org/abs/1308.1145
http://dx.doi.org/10.1103/PhysRevSTAB.10.082401
http://dx.doi.org/10.1103/PhysRevSTAB.15.070703
http://www.wolfram.com/mathematica/
http://www.wolfram.com/mathematica/
http://www.wolfram.com/mathematica/
http://www.wolfram.com/mathematica/

