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Three-dimensional turbulent flows are characterized by a flux of energy from large to small scales,
which breaks the time reversal symmetry. The motion of tracer particles, which tend to lose energy faster
than they gain it, is also irreversible. Here, we connect the time irreversibility in the motion of single tracers
with vortex stretching and thus with the generation of the smallest scales.
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The generation of small scales, or large velocity gra-
dients, is fundamental to three-dimensional (3D) turbulent
fluid flows; it is responsible for a flux of energy ε from
large to small scales. This flux makes turbulence a system
very far from equilibrium, which differs fundamentally
from other systems close to thermal equillibrium [1,2]. One
of the seminal theoretical results in the limit of very small
viscosity or very large Reynolds numbers [3,4] is that
hΔuðxÞ3i ¼ − 4

5
εx, where hΔuðxÞ3i, is the third moment of

the longitudinal velocity difference between two points
separated by a distance x. This fundamental asymmetry in
velocity differences persists all the way down to very small
distances so the third moment of the velocity derivative
∂xux is negative: hð∂xuxÞ3i ≤ 0. In fact, in the case of
homogeneous and isotropic turbulent flows, which we are
focusing on here, the third moment of ∂xux is related to the
generation of the smallest scales in turbulence through
the amplification of vorticity ω ¼ ∇ × u. Vortex stretching,
the rate of growth of 1

2
hω2i, is found from the Navier-

Stokes equations to be hω · S · ωi, where Sij ¼ ð∂jui þ∂iujÞ=2 represents the rate of strain of the flow [5,6]. This
term reduces to hω · S · ωi ¼ − 35

6
hð∂xuxÞ3i [7], so

hð∂xuxÞ3i < 0 is equivalent to the generation (stretching)
of vorticity: hω · S · ωi > 0.
Recently, it was shown that the motion of individual

tracer particles, which follow the flow, is irreversible:
Tracers tend to lose kinetic energy faster than they gain
it [8]. This implies negative odd order moments of the
kinetic energy increment between two different times along
a trajectory, and in particular, of the rate of change of
kinetic energy, which is equal to the power p of the forces
acting on particles. Our construction is based on decom-
posing the power p into a local part pL, due to the change
of flow field with time at fixed positions, and a convective
part pC, which accounts for the change of kinetic energy
when a particle is moving in an otherwise frozen flow field.

Here, we present evidence that the origin of this irrevers-
ibility [8–12] lies in the generation of the smallest scales of
the flow. With analytic calculation and support from
numerical simulations we connect vortex stretching, or,
equivalently, the generation of small scales, to the third
moment hp3i along individual tracer trajectories.
Analytical results: Vortex stretching and tracer particle

motion in turbulence.— Our analytic work is based on the
observation that the rate of change of kinetic energy of a
tracer particle moving along a streamline of the flow, or
equivalently, along the trajectory in a frozen turbulent
velocity field, pC ¼ u · ðu · ∇uÞ, reduces to the simple
form: pC ¼ u · S · u. In any flow, the straining S decom-
poses into a superposition of compression or stretching
along three orthogonal directions, denoted by ei, with three
straining rates, λi. The vectors ei and the straining rates λi
are the eigenvectors and eigenvalues of S. A positive
(negative) value of λi corresponds to stretching (compres-
sion) in the direction ei. Incompressibility (i.e., volume
conservation) imposes that λ1 þ λ2 þ λ3 ¼ 0: i.e., the
amounts of stretching and compression along the three
directions ei sum up to 0. In a turbulent flow, the velocity
field u and the rate of strain S are expected to be
independent of each other. This is a consequence of the
fact that u is controlled by the large scales of the flow,
whereas S is controlled by the small scales. In a highly
turbulent flow, these scales are vastly different, so u and S
are only very weakly coupled. Under these conditions,
which we will show later to be satisfied, the third moment
of pC can be simply related to the average htrðS3Þi:

hp3
Ci ¼ hðu · S · uÞ3i ¼ 8

105
hjuj6ihtrðS3Þi: ð1Þ

To prove Eq. (1), we project the velocity u in the
eigenframe ei of the rate of strain S. Denoting x̂i, the
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cosines of the angles between the velocity u and the unit
vectors ei: x̂i ≡ u · ei=juj ¼ ui=juj, the expression of
u · S · u reduces to

u · S · u ¼
X3

i¼1

λiu2i ¼ u2
X3

i¼1

λix̂2i : ð2Þ

The independence between u and S implies that the three
cosines x̂i define a point that is uniformly distributed on the
unit sphere in three dimensions, which allows us to evaluate
geometrical quantities such as hx̂6i i ¼ 1=7, hx̂21x̂42i ¼ 1=35,
and hx̂21x̂22x̂23i ¼ 1=105. Using also the identity htrðS3Þi ¼
3hλ1λ2λ3i readily leads to Eq. (1). We further notice that the
average htrðS3Þi is in fact related, in statistically homo-
geneous turbulent flows, to vortex stretching hω · S · ωi, via
the following relation [7]:

hω · S · ωi ¼ −
4

3
htrðS3Þi: ð3Þ

Therefore, combining Eqs. (1) and (3), we obtain

hp3
Ci ¼

8

105
hjuj6ihtrðS3Þi ¼ −

2

35
hjuj6ihω · S · ωi: ð4Þ

It has been noticed many times that the probability
distributions of individual components of velocity u are
close to Gaussian [13,14]. Assuming a Gaussian distribu-
tion of u allows us to express the 6th moment of velocity in
Eq. (4) in terms of the velocity variance hu2i. This variance
can be expressed in terms of the viscosity ν, the dissipation
ε, and the Taylor-microscale Reynolds number, Rλ, which
characterizes the intensity of turbulence hu2i ¼ffiffiffiffiffiffiffiffiffiffiffið3=5Þp

RλðνεÞ1=2. Last, using the relation between
htrðS3Þi and the skewness of the velocity derivative
S∂xux ¼ hð∂xuxÞ3i=hð∂xuxÞ2ið3=2Þ ¼ hð∂xuxÞ3i=ðε=15νÞ3=2
[7], Eq. (4) leads to

hp3
Ci ¼

7

225
S∂xuxR3

λε
3: ð5Þ

Equations (4) and (5) were obtained analytically, and
provide a quantitative relation between vortex stretching
and the kinetic energy change along a streamline, or
equivalently, the rate of kinetic energy change in a “frozen,”
i.e., time independent, turbulent flow field. The same
assumptions of lack of correlation between u and S, and
of a Gaussian distribution of the velocity u, also lead to an
exact determination of the variance of pC:

hp2
Ci ¼

1

15
R2
λε

2: ð6Þ

We further notice that the total rate of kinetic energy
change along a particle trajectory in a turbulent flow, i.e.,
the instantaneous power of the forces acting on the fluid

particle, p¼ðd=dtÞð1
2
u2Þ¼a ·u¼u ·∂tuþu ·ðu ·∇uÞ,

decomposes into the convective contribution
pC ¼ u · S · u, which we investigated above, plus an
additional local contribution pL due to the time variation
of u: pL ¼ u · ∂tu. To rigorously establish a relation
between vortex stretching and the Lagrangian quantity p,
one needs to also consider the properties of pL. We recall
that in this context the third moment of p is also negative
[8], i.e., has the same sign as hp3

Ci in 3D turbulent flows.
Decomposition of the power p: Numerical results.— To

proceed, we rely on numerical results, based on the
determination of the motion of tracer particles in homo-
geneous and isotropic 3D turbulent flows, using fully
resolved direct numerical simulations (DNS). Two simu-
lations were generated by using the cluster at ENS Lyon;
see Ref. [15]. Additionally, we used data from the Johns
Hopkins University database [16].
In homogeneous and stationary flows, the first moments

of p, pC, and pL are all exactly 0. The magnitudes of pC
and pL may be estimated from simple dimensional argu-
ments: jpCj ∼ jpLj ∼U2=τK , where U is the typical size of
the velocity fluctuations, and τK is the shortest time scales
of the turbulent eddies. Using the known relation τK ∼
ðU2=εÞ=Rλ [5,6], one finds jpCj ∼ jpLj ∼ εRλ. Note that
this simple scaling of pC is consistent with Eq. (6). Our
numerical results, shown in Table I, support these scalings.
The growth of the variance of p=ε as R4=3

λ found in
Ref. [8] thus points to a cancellation between pL and pC.
Table I shows that the correlation coefficient between pL
and pC: hpCpLi=ðhp2

Cihp2
LiÞ1=2, is approximately −0.9 and

approaches −1 as the Reynolds number increases. This
anticorrelation results in the variance of p to be much
smaller than those of pC and pL. Although reminiscent of
the well-documented cancellation between the acceleration
components aC ¼ u ·∇u and aL ¼ ∂tu [17–20], the can-
cellation between pC and pL cannot be simply deduced
from the results of Refs. [18,19]. Please note that pC and pL
involve the projections of aC and aL along the direction of
the velocity u, which is correlated with a [21].
Prevalence of vortex stretching on the third moment of

p.—We now establish that the third moment hp3i is
dominated by hp3

Ci. Figure 1 shows the joint probability

TABLE I. Second moments of the distributions of p=ε, pC=ε,
and pL=ε at the three Reynolds numbers studied in this article.
The values of β are measured from fitting the conditional
averages hpLjpCi ¼ −βpC.

Rλ 193 275 430

hp2i=ε2 3.83 × 102 7.36 × 102 1.32 × 103

hp2
Ci=ε2 2.15 × 103 5.00 × 103 1.20 × 104

hp2
Li=ε2 1.78 × 103 4.25 × 103 1.07 × 104

−hpLpCi=ε2 1.77 × 103 4.26 × 103 1.07 × 104

hpCpLi=ðhp2
Cihp2

LiÞ1=2 −0.90 −0.92 −0.94
β 0.83 0.86 0.90
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distribution function (PDF) of pC and pL and indicates that
the values of pC and pL cluster close to the line
pC þ pL ¼ 0, thus implying a cancellation between the
two quantities, which increases with Rλ. Our numerical
simulations reveal an approximately linear relation between
the conditional average hpLjpCi and pC (shown as the
black dashed line in Fig. 1): hpLjpCi ≈ −βðRλÞpC. The
dimensionless coefficient β, shown in Table I, increases
weakly with Rλ, which is consistent with the observed
tendency of pL and pC to become increasingly anticorre-
lated when Rλ increases. Consistent with hpLjpCi ≈ −βpC,
we observe that the following relations,

hpLpCi ¼ −βhp2
Ci and hpLp2

Ci ¼ −βhp3
Ci; ð7Þ

are numerically very accurately satisfied. These observa-
tions imply that hpjpCi ≈ ð1 − βÞpC, where the coefficient
1 − β decreases as Rλ increases, from ≈0.17 at Rλ ¼ 193 to
≈0.10 at Rλ ¼ 430. In comparison, the average of pC
conditioned on pL, shown as the white dashed line in
Fig. 1 is almost exactly equal to −pL, which implies
that hpjpLi ≈ 0.
Figure 2 shows the joint PDFs of pC and p (a) and of pL

and p (b). The conditional averages hpjpCi and hpjpLi are
shown as black dashed lines. The conditional averages
hpCjpi and hpLjpi, shown as white dashed lines, have the
particularly simple forms hpCjpi ≈ p and hpLjpi ≈ 0. In
addition, the joint PDF of p and pL is almost symmetrical
to both p ¼ 0 and pL ¼ 0. The power p is therefore well
correlated with pC, but not with pL. The lack of correlation
between p on pL, implies that

hppLi ≈ hp2pLi ≈ hpp2
Li ≈ 0: ð8Þ

Equations (7) and (8) lead to the relation hp2
Li ¼ βhp2

Ci
for the second moment, which also leads to

hp2i ¼ ð1 − βÞhp2
Ci; ð9Þ

a relation which is numerically very accurately satisfied.
We observe that the relation hp2

Li ¼ βhp2
Ci is consistent

with the expected scaling pL ∼ εRλ. Similarly, assuming
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FIG. 1. The joint probability density function (PDF) between
pC=ε (horizontal) and pL=ε (vertical) at Rλ ¼ 275, color coded in
a logarithmic scale. Equal-probability contours, separated by
factors of 10, are shown. The black dashed line shows hpLjpCi=ε,
which is approximately −0.86 × pC=ε. The white dashed line
shows hpCjpLi=ε, which is approximately −pL=ε.
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FIG. 2. (a) The joint PDF between pC=ε (horizontal) and
p=ε (vertical), and (b) the joint PDF between pL=ε (horizontal)
and p=ε (vertical), all at Rλ ¼ 275, color coded in a logarithmic
scale (see color bar). The equal-probability contours shown are
separated by factors of 10. In (a), the black dashed line represents
the conditional average hp=εjpC=εi, and is very close to
hpjpCi=ε ≈ 0.14 × pC=ε. The white dashed line corresponds to
hpC=εjp=εi, and is well approximated by hpCjpi=ε ≈ p=ε. In (b),
the black dashed line represents the conditional average
hp=εjpL=εi, and is very close to hpjpLi=ε ≈ 0. The white dashed
line indicates hpL=εjp=εi, and is also very well approximated
by hpLjpi=ε ≈ 0.
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Eqs. (7) and (8) to be exact leads to the following relations
between the third moments of pC and pL: hp3

Li ¼ −βhp3
Ci

and hp2
LpCi ¼ βhp3

Ci, leading to

hp3i ¼ ð1 − βÞhp3
Ci: ð10Þ

This expression supports our claim that the assumption of
independence between p and pL imposes that the sign of
hp3i is given by hp3

Ci.
We note that Eq. (9), together with the observed scaling

hp2i ∝ R4=3
λ and hp2

Ci ∝ R2
λ , suggest that ð1 − βÞ ∝ R−2=3

λ .
Equation (10) for hp3i therefore implies that hp3i ∝ R7=3

λ ,
at odds with the experimental findings [8]. In fact, the
relations above for the third moment are quantitatively
inaccurate, as shown in Table II. We found that hp2

Lpi is of
the order of 10% of jhp3

Cij, much larger than predicted by
Eq. (8) (in comparison, hpLp2i is found to be much
smaller). To take the effect of nonzero hp2

Lpi into account,
we introduce ζ ¼ hp2

Lpi=hp3
Ci, where ζ is a positive

number of order ∼0.1 and decreases when Rλ increases.
This then leads to hp2

LpCi ¼ ðβ − ζÞhp3
Ci and hp3

Li ¼
−ðβ − 2ζÞhp3

Ci, and, using Eq. (4), to

hp3i ¼ ð1 − β − ζÞhp3
Ci

¼ −
2

35
ð1 − β − ζÞhjuj6ihω · S · ωi; ð11Þ

which shows first the direct dependence of hp3i on hp3
Ci,

and second, relates it to vortex stretching via Eq. (4).
Using the dependence hp3

Ci ∝ R3
λ , the observation

hp3i ≈ −ε3R2
λ [8], and Eq. (11) leads to 1 − ζ=

ð1 − βÞ ∝ R−1=3
λ . Our numerical results indeed indicate a

slight decrease of 1 − ζ=ð1 − βÞ, from 0.36 to 0.34, when
Rλ increases from 193 to 430.
Lack of correlation between strain and velocity.— We

reconsider now the essential assumption that u and S are
uncorrelated. In the following, we sort the eigenvalues of S,
λi, in decreasing order: λ1 ≥ λ2 ≥ λ3. Figure 3 shows that
the PDFs of jx̂ij ¼ jei · euj, the absolute value of the cosine
of the angle between the eigenvector ei and the unit vector
in the direction of the velocity eu ¼ u=juj (the sign of this
cosine is immaterial) at Rλ ¼ 275, are approximately equal
to 1. Figure 4 shows that the dependence of the conditional

average of the eigenvalues of S on u2, hλiju2i, is weak, up
to 2.5hu2i. As the probability of large values of u2 drops
very rapidly when u2 increases [13,14,22], the stronger
dependence of λi at higher values of u2 has only little effect
on the low-order moments of pC studied here. This justifies
the assumption, used to derive Eqs. (4), (5), that u and S are
uncorrelated.
Discussion.— In conclusion, using the physically justi-

fied approximation that velocity u and strain S are
uncorrelated, we established that the third moment of
pC, the rate of change of kinetic energy along trajectories
in a frozen velocity field reflects vortex stretching, and
ultimately small scale generation in 3D turbulent flows. In
particular, the negative sign of hp3

Ci originates from the
positive sign of the vortex stretching. This main finding

TABLE II. Third moments of the distributions of p=ε, pC=ε,
and pL=ε at the three Reynolds numbers studied in this article.

Rλ 193 275 430

−hp3i=ε3 3.87 × 103 1.23 × 104 3.21 × 104

−hp3
Ci=ε3 5.39 × 104 2.40 × 105 1.00 × 106

hp2
CpLi=ε3 4.54 × 104 2.05 × 105 8.99 × 105

−hpCp2
Li=ε3 4.02 × 104 1.84 × 105 8.29 × 105

hp3
Li=ε3 3.44 × 104 1.63 × 105 7.63 × 105

hp3i=hp3
Ci 0.072 0.051 0.032
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FIG. 3. The PDFs of the cosines of the angles between the
direction of the velocity u, and the eigenvectors ei of S at
Rλ ¼ 275. The deviations of the PDF of jei · euj from the constant
value 1 are weak, supporting the assumption of a lack of
correlation between u and S.
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relates to the recent observation concerning the third
moment of the fluctuations of power p of fluid tracers
along Lagrangian trajectories, which was observed to be
negative [8]: hp3i ∝ −ε3R2

λ . Our result provides an essen-
tial step towards an exact relation between energy flux or
small scale generation and Lagrangian single-particle
statistics.
We note that in 2D turbulence, although the properties of

the third moments of p are very similar to those in three
dimensions [8], the approach proposed here does not apply,
because of the entirely different mechanism of amplifica-
tion of the large velocity gradient [23]. This leaves open the
relation between the various fluxes and irreversibility in 2D
flow, or in other flows of geophysical interest. The
dynamics of inertial particles that have a significant density
difference compared to the fluid, or have a significant size,
involves completely different physical mechanisms
[24–26]. It would be interesting to extend our analysis
to such particles.
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