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We study the leading-power gluon transverse-momentum-dependent distributions (TMDs) of relevance
to the study of asymmetries in the scattering off transversely polarized hadrons. Next-to-leading-order
perturbative calculations of these TMDs show that at large transverse momentum they have common
dynamical origins but that in the limit of a small longitudinal momentum fraction x, only one origin
remains. We find that in this limit, only the dipole-type gluon TMDs survive and become identical to each
other. At small x, they are all given by the expectation value of a single Wilson loop inside the transversely
polarized hadron, the so-called spin-dependent odderon. This universal origin of transverse spin
asymmetries at small x is of importance to current and future experimental studies, paving the way to
a better understanding of the role of gluons in the three-dimensional structure of spin-polarized protons.
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Scattering off protons in high-energy particle collisions
such as those performed at RHIC and LHC can be
described as scattering off quarks and gluons inside the
proton. As the energy of the scattering process increases,
the gluons play an increasingly important role, as reflected
by a fast growing gluon density inside the proton. The limit
of high gluon density is the one in which the gluons carry
only a very small fraction x of the longitudinal momentum
of the proton. It is expected on theoretical grounds that the
gluon density will not increase without bound towards
small x but rather that it will saturate. Because of the
dominance of gluons over quarks and the expected gluon
saturation, the description of scattering processes consid-
erably simplifies in the small-x limit. A complication that
remains in this limit though is that gluonic effects do not
manifest themselves in the same way in all processes.
It has recently become clear that the transverse momen-

tum distribution of gluons inside the proton is not a unique
quantity. Different processes may probe different distribu-
tions and, thus, yield different answers. This has become
apparent from studies of the unpolarized gluon distribution
in the small-x regime [1–3] and independently from studies
of spin effects in high-energy scattering processes.
Scattering experiments involving a spin-polarized proton
exhibit large asymmetries in the production of final state
particles [4–12]. Theoretical studies of these still largely
ununderstood single spin asymmetries (SSAs) led to the
insight that transverse-momentum-dependent distributions
(TMDs) of both quarks and gluons are sensitive to the flow
of the color charge of quarks and gluons in a process and,
hence, that they are, in general, process specific, i.e.,
nonuniversal [13]. TMD studies of the color flow depend-
ence are generally not performed in the high gluon density

region. In Refs. [2,3], the two types of treatments were
connected for the case in which neither the proton nor the
gluons are spin polarized. For transversely polarized pro-
tons, the connection between the TMD and small-x
formalisms has, so far, not been made. This is our aim here.
We will study the (T-odd) gluon TMDs inside a proton

that is polarized transversely to its momentum direction and
consider the limit of high gluon density or small-x fraction.
We then connect the results to those that arise in a small-x
treatment and observe that the two pictures are fully
compatible, despite the initial mismatch in the number
of distributions. Surprisingly, unlike the unpolarized case,
we find that there is, in fact, only one type of gluon
correlation to consider in the transversely polarized case in
the limit of small x, thereby reducing the high degree of
nonuniversality [14] to a single, universal distribution. The
distribution is linked to what has been discussed in the
literature under the name of spin-dependent odderon.
Although gluon-induced SSAs are likely smaller than
valence quark ones, the universality of gluon effects in
the transverse spin case is of high experimental interest, as
it can be investigated at RHIC using collisions of polarized
protons on heavy ions and possibly directly compared to
data from proposed experiments at an electron-ion collider
or a polarized fixed-target experiment at the LHC called
AFTER@LHC.
The interplay of spin or TMD physics and small-x

physics is a topical issue. Recent developments in this
direction include modeling nuclear quark TMDs using
quasiclassical methods [15–17], the study of linear gluon
polarization in the small-x formalism [18,19], and the
evolution of gluon distributions from moderate to low x
[17,20–22]. Phenomenological studies of T-odd gluon
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TMDs have been performed in Refs. [23–26] without
including process dependence. Spin asymmetries in pA
collisions have been investigated extensively [27–34]. The
longitudinal proton spin distribution Δg or g1L has been
studied in the small-x regime in Refs. [35–37]. The trans-
verse spin case turns out to be quite different.
This Letter is structured as follows. First, we present the

calculation of the large transverse momentum tail of the
gluon TMDs of relevance for single transverse spin
asymmetries and consider the small-x limit. A reduction
from three independent TMDs to just one is observed.
Subsequently, we connect this distribution to the spin-
dependent odderon distribution arising in small-x studies,
finding full consistency among the results. We end with a
discussion and conclusions.
The information on gluon TMDs inside a transversely

polarized hadron (with spin vector ST) is formally encoded
in the following matrix element (for the sake of simplicity,
we omit a soft factor in the properly defined gluon TMDs
[38–40], as this does not affect the results of this work),

Γμν½U;U0� ¼ 1

xPþ

Z
dy−d2yT
ð2πÞ3 eiky

× hP; ST j2Tr½Fþν
T ð0ÞUFþμ

T ðyÞU0�jP; STijyþ¼0;

ð1Þ
where U and U0 are process-dependent gauge links in the
fundamental representation. At leading power, this corre-
lator can be parametrized by six independent tensor
structures [41],

Γμν ¼ δμνT fg1 −
�
2kμTk

ν
T

k2T
þ δμνT

�
h⊥g
1

− δμνT
ϵTαβkαTS

β
T

M
f⊥g
1T − iϵμνT

kT · ST
M

gg1T

−
~kfμT SνgT þ ~SfμT kνgT

2M
hg1T þ

~kfμT kνgT
k2T

kT · ST
M

h⊥g
1T ; ð2Þ

where all six TMDs are functions of x and k2T , ϵμνT ¼
ϵρσμνnρpσ, with ϵ12T ¼ 1 and δμνT ¼ −gμν þ pfμnμg=p · n.

We also used shorthand notations like ~kνT ¼ ϵμνT kTμ. Note

that the normalizations for gluon TMDs h⊥g
1 , h⊥g

1T , and hg1T
are slightly different from the ones used in Refs. [41,42]
because our results suggest they are a more natural choice.
The first two gluon TMDs fg1 and h⊥g

1 are the unpolar-
ized and linearly polarized gluon distribution, respectively.
Among the four transverse-spin-dependent gluon TMDs,
the three T-odd gluon TMDs f⊥g

1T , h
⊥g
1T , and h

g
1T are relevant

for the single spin asymmetry studies. As mentioned, none
of these TMDs is universal and should have a ½U;U0� label,
as in general, different processes probe matrix elements
with different gauge links. Here we will restrict ourselves to
the two most important cases, involving only single future

or past pointing staplelike gauge links denoted byþ and −,
respectively. In the notation of Ref. [43], there are two

T-odd combinations labeled with ðfÞ and ðdÞ, ΓðT−oddÞ
ðfÞ ¼

ðΓ½þ;þ†� − Γ½−;−†�Þ=2 and ΓðT−oddÞ
ðdÞ ¼ ðΓ½þ;−†� − Γ½−;þ†�Þ=2.

For the unpolarized gluon distribution at small x, the first
type is usually referred to as the Weizsäcker-Williams
(WW) distribution, while the latter one is commonly
known as the dipole gluon distribution [2,3]. Here we will
also refer to TMDs with the superscript “ðfÞ” as WW-type
distributions and with a “ðdÞ” as dipole-type gluon TMDs.
The transverse moments of the ðfÞ- and ðdÞ-type functions
are related to single gluon pole matrix elements with
different color structures, fabc and dabc, respectively.
T-odd TMDs with more complicated link structures can,

in principle, arise but do not in any currently known TMD-
factorizing process. At small x, some processes can become
effectively TMD factorizing, where additional distributions
could enter [2]. These differ from the ðfÞ- and ðdÞ-type
distributions by terms of subleading order in 1=Nc, which
can be calculated within a small-x formalism [31,33]. So if
relevant at all, they can, to some extent, be related to the
distributions considered here (also following the methods
of Ref. [14]).
In analogy to the T-odd quark TMDs [44–46], all three

T-odd gluon TMDs can be perturbatively calculated in the
collinear twist-3 formalism at large transverse momentum.
The hard coefficients entering in these expressions are
usually different for different gauge links appearing in the
gluon matrix element given in Eq. (1). Here we will present
the results for the ðfÞ- and ðdÞ-type functions that areC even
and C odd, respectively. The T-odd collinear twist-3 func-
tions that appear in the large-kT tail expressions are (chiral-
even) quark-gluon and trigluon Qiu-Sterman functions
[47–49], with matching C parity. Chiral-odd quark-gluon
Qiu-Sterman functions are suppressed for gluon TMDs.
The perturbative calculation follows a similar procedure as

in Ref. [44]; cf. Fig. 1. The WW-type gluon Sivers function
f⊥1T has been computed in the quark channel in terms of the
quark-gluon Qiu-Sterman function TF;q in Ref. [50],

f⊥g=qðfÞ
1T ðx; k2TÞ ¼ C1

M
k4T

Z
1

x

dz
z

X
qþq̄

×

�
TF;qðz; zÞ

1þ ð1 − ξÞ2
ξ

− TF;qðz; z − xÞ 2 − ξ

ξ

�
; ð3Þ

where ξ ¼ x=z and C1 ¼ ðNc=2Þðαs=2π2Þ. The notation TF
is the same as in Ref. [44]. The

P
qþq̄ indicates that the sum

runs over all quark flavors and antiflavors. Here, a factor −g
is included in the definition of the antiquark Qiu-Sterman
function, such that it satisfies TF;q̄ðx1; x2Þ ¼ TF;qð−x1;−x2Þ
[51].Thesoft-gluonpolecontribution (the first termwithin the
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brackets) is generated by the diagram shown in Fig. 1(a), and
thehard-gluonpole contribution (the second term) arises from
Fig.1(b).This expressioncanbe related to theone inRef. [52].
Throughout this Letter, we will neglect the contribution from
the antisymmetric partner of the Qiu-Sterman function ~TF
[49], which becomes suppressed in the small-x regime,
regardless of the gauge link structure, as it is antisymmetric
in its two arguments (assuming it has no pole).
The gluon TMDs hg1T and h

⊥g
1T can be calculated similarly

at large transverse momentum. They turn out to possess the
same perturbative tail 1=k4T behavior as the Sivers function,
only differing in the hard coefficients:

hg=qðfÞ1T ðx; k2TÞ

¼ C1

M
k4T

Z
1

x

dz
z

X
qþq̄

×

�
TF;qðz; zÞ

2 − 2ξ

ξ
− TF;qðz; z − xÞ 2 − ξ

ξ

�
; ð4Þ

h⊥g=qðfÞ
1T ðx; k2TÞ ¼ C1

M
k4T

Z
1

x

dz
z

X
qþq̄

TF;qðz; zÞ
4 − 4ξ

ξ
: ð5Þ

We note that the hard-gluon pole contribution to h⊥g
1T is

absent.
We now extrapolate these results to the small-x limit. For

theWW-type distributions, it is easy to see that in the small-

x limit, the gluon TMDs f⊥g=qðfÞ
1T and hg=qðfÞ1T vanish up to

leading logarithm lnð1=xÞ accuracy, due to the cancellation
among the soft-gluon and hard-gluon pole contributions.
The same cancellation occurs at small x for the trigluon

correlation contribution: f⊥g=gðfÞ
1T ≈ hg=gðfÞ1T ≈ 0.

The case of h⊥gðfÞ
1T is different, however. Combining the

small-x limit of the quark channel in Eq. (4) with the
contribution of the gluon channel, it takes the form

h⊥gðfÞ
1T ðx; k2TÞ ≈ C1

M
k4T

4

x

×
Z

1

x→0

dz

�X
qþq̄

TF;qðz; zÞ þ TðþÞ
G ðz; zÞ

�
;

ð6Þ

where TðþÞ
G is the C-even trigluon correlation [48,53,54].

This particular integral vanishes as a consequence of
transverse momentum conservation, as it can be related
(at tree level certainly [55] and the relation is stable under
QCD corrections [51]) to the Burkardt sum rule for the first
transverse momentum of the Sivers TMD [56]. Therefore,

for the h⊥gðfÞ
1T case, the leading logarithm contributions

cancel out between the quark and gluon channels.
Now we consider the dipole case. Again all three TMDs

can be dynamically generated by the Qiu-Sterman function,
and possess the same perturbative tail 1=k4T . The result for
the gluon Sivers function in the quark channel is

f⊥g=qðdÞ
1T ðx; k2TÞ

¼ C2

M
k4T

Z
1

x

dz
z

X
q−q̄

×

�
TF;qðz; zÞ

1þ ð1 − ξÞ2
ξ

þ TF;qðz; z − xÞ 2 − ξ

ξ

�
;

ð7Þ

where C2 ¼ ½ðN2
c − 4Þ=2Nc�ðαs=2π2Þ. The

P
q−q̄ indicates

that in this C-odd case, the sum runs over all quark flavors
minus antiflavors. Similarly, for the other two gluon TMDs,
we find

hg=qðdÞ1T ðx; k2TÞ

¼ C2

M
k4T

Z
1

x

dz
z

X
q−q̄

×

�
TF;qðz; zÞ

2 − 2ξ

ξ
þ TF;qðz; z − xÞ 2 − ξ

ξ

�
; ð8Þ

h⊥g=qðdÞ
1T ðx; k2TÞ

¼ C2

M
k4T

Z
1

x

dz
z

X
q−q̄

× TF;qðz; zÞ
4 − 4ξ

ξ
: ð9Þ

It is worth noting that as compared to the WW-type
distributions, the overall color factor is different, and
the sign of the hard-gluon pole contributions is reversed.
The complete expressions for the gluon channel (g=g) will
be presented elsewhere. Here we only present the extrapo-
lation to the small-x limit. In this limit, all three dipole-type
T-odd gluon TMDs take the same form in both the quark
and the gluon channel:

FIG. 1. Diagrams contributing to T-odd gluon TMDs at large
transverse momentum in the flavor-singlet case. (a) Soft-gluon
pole contribution. (b) Hard-gluon pole contribution. (Mirror
diagrams are not shown.)

PRL 116, 122001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

25 MARCH 2016

122001-3



f⊥gðdÞ
1T ≈ hgðdÞ1T ≈ h⊥gðdÞ

1T ≈
M
k4T

4

x

×
Z

1

x→0

dz

�
C2

X
q−q̄

TF;qðz; zÞ þ C1T
ð−Þ
G ðz; zÞ

�
;

ð10Þ

where Tð−Þ
G is the C-odd trigluon correlation defined in

Refs. [48,53,54]. The splitting kernel that appears in the
above formula is identical to that for the ordinary unpo-
larized gluon distribution for the gluon-to-gluon channel.
Therefore, from these large-kT expressions, we conclude
that the dipole-type T-odd gluon TMDs are not necessarily
suppressed at small x with respect to the unpolarized gluon
distribution (which grows very rapidly towards small x),
but the WW-type T-odd gluon TMDs are. The additional
1=k2T suppression compared to the 1=k2T large-kT tail of the
unpolarized gluon distribution does not mean the TMDs are
power suppressed at smaller kT too.
The existence of leading logarithm contributions in the

dipole case actually justifies a small-x treatment of T-odd
gluon TMDswithout the restriction of large kT . Our starting
point is the T-odd part of the dipole-type gluon TMDmatrix
element [we will suppress the label ðdÞ from now on]:

Γμν
T-oddðx;kT ;STÞ ¼

1

xPþ

Z
dy−d2yT
ð2πÞ3 eiky

×

�
hP;ST jTr½Fþν

T ð0ÞU½þ�Fþμ
T ðyÞU½−�†

−Fþν
T ð0ÞU½−�Fþμ

T ðyÞU½þ�†�jP;STi
�
jyþ¼0:

ð11Þ

Next we approximate the exponential eik
þy− by 1. In

Refs. [2,3], this is argued to be a good approximation as
long as kþ ¼ xPþ is very small, although corrections may
affect the rapidity evolution, as recently discussed in
Ref. [22]. After making this approximation, Eq. (11) can
be reorganized as

Γμν
T-oddðx; kT ; STÞ

¼ kμTk
ν
T

g2VxPþ

Z
d2yT
ð2πÞ3 e

ikTyT

× hP; ST jTr½U½□�ð0T; yTÞ − U½□�†ð0T; yTÞ�jP; STi; ð12Þ

where V ¼ R
dy−, andU½□� represents a rectangular Wilson

loop with lightlike Wilson lines at transverse separation yT .
To arrive at this equation, we used translational invariance
and

∂μ
TUðyTÞ ¼ −ig

Z þ∞

−∞
dy−

× U½−∞−; y−; yT �∂μ
TAþðy−; yTÞU½y−;∞−; yT �;

ð13Þ

where ∂μ
TAþðy−; yTÞ is part of the gluon field strength

operator Fþμ
T . The ∂þA

μ
Tðy−; yTÞ part corresponds to the

transverse gauge link at light cone infinity, which can be
neglected in a covariant gauge calculation [13]. The remain-
ing part is power suppressed. One notices that
Tr½U½□�ð0T; yTÞ −U½□�†ð0T; yTÞ� is, in fact, the dipole odd-
eron operator [57]. The spin-dependent odderon has been
considered in this way in Ref. [58] and in many studies of
elastic scattering but without reference to TMDs; e.g.,
Refs. [59–61].
Next, we use that the matrix element of the odderon

operator only has one possible ST dependence. It follows
that for a transversely polarized nucleon, the T-odd part of
Γμν can be parametrized by only one leading-twist tensor
structure [58]:

Γμν
T-oddðx; kT ; STÞ ¼

kμTk
ν
TNc

2π2αsx

ϵαβT STαkTβ
M

O⊥
1Tðx; k2TÞ; ð14Þ

where O⊥
1Tðx; k2TÞ is identified as a spin-dependent odderon

in Ref. [58]. This leads us to identify

kμTk
ν
TNc

2π2αsx

ϵαβT STαkTβ
M

O⊥
1Tðx; k2TÞ

¼ −δμνT
ϵTαβkαTS

β
T

M
f⊥g
1T

−
~kfμT SνgT þ ~SfμT kνgT

2M
hg1T þ

~kfμT kνgT
k2T

kT · ST
M

h⊥g
1T : ð15Þ

In other words, the dipole-type T-odd gluon TMDs satisfy

xf⊥g
1T ¼ xhg1T ¼ xh⊥g

1T ¼ −k2TNc

4π2αs
O⊥

1Tðx; k2TÞ; ð16Þ

which is the main result of this Letter. We have now
obtained a consistent picture at small x involving only one
independent TMD determined by the expectation value of
the spin-dependent odderon. We conclude that this one
universal function determined by the imaginary part of a
closed Wilson loop should govern the single transverse
spin asymmetries in p↑p and p↑A scattering at RHIC
in the small-x regime. This description differs from SSAs
involving the spin-independent odderon [16,29].
The spin-dependent odderon has been considered in

Ref. [58] in the context of the McLerran-Venugopalan
(MV) model [62]. The MV model describes the small-x
distribution of gluons in the proton or nucleus as generated
by a Gaussian distribution of color sources. The spin-
dependent odderon can be obtained [58] by including terms
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that are cubic in the color sources [57,63]. In Ref. [58], it is
observed that in the extendedMVmodelO⊥

1Tðx; k2TÞ exhibits
a node in kT . Furthermore, our tail calculations suggest that
k2TO

⊥
1Tðx; k2TÞ shouldmatch onto a 1=k4T behavior at large kT .

About the x dependence, it was noted in Ref. [58] that the
evolution of the odderon with increasing energy [64,65]
suggests that the T-odd dipole gluon TMDs should fall off
moderately with decreasing x as x0.3 with respect to the
unpolarized dipole gluon TMD (because the odderon has
zero intercept; see, also, Ref. [66]). It should be feasible to
test these expectations experimentally. For this purpose, one
could study SSAs in a number of processes that in the small-
x regime probe the dipole distributions; see, e.g., Ref. [3]. In
p↑A collisions, these are backward hadron production (as
the odderon isC-parity odd, for gg-dominated scattering one
should select final states that are not C even, i.e., h�X as
opposed to π0X or jetX), γ� production, and γ� jet production
in the back-to-back correlation limit. BRAHMS data on
SSAs in backward charged hadron production still allow for
10%-level asymmetries [10].
We end this Letter with some comments on the relation

between the SSAs and parton orbital angular momentum. It
is known that the large-x quark distribution in the trans-
verse plane inside a transversely polarized proton is
distorted [67]. This distortion is related to the nonzero
orbital angular momentum of the quarks. As a consequence
of this distortion, there will be a left-right asymmetric
distribution of color sources resulting in an asymmetric
distribution of gluons at small x. This explains the necessity
of cubic source terms and the appearance of an odderon
contribution in a transversely polarized proton. In Ref. [58],
this idea was exploited to find a relation between the spin-
dependent odderon size and the anomalous magnetic
moments of the up and down quarks in the proton.
Given these insights, it is now also natural to expect that
the three dipole-type T-odd gluon TMDs for general x
reflect features of the distortion in the transverse plane of
the gluon distribution in a transversely polarized proton and
as such are an indirect reflection of the presence of gluon
orbital angular momentum.
In summary,wehave calculated three leading-powerT-odd

gluonTMDs inside a transverselypolarizedhadronat largekT
and in the saturation regime. It has been found that the dipole-
type T-odd gluon TMDs rise rapidly with decreasing x,
whereas the WW-type ones are suppressed at small x. In
deriving the latter, momentum conservation was seen to play
an essential role. This aspect remains to be understood. The
three dipole-type T-odd gluon TMDs become equal in the
small-x limit and are determined by the spin-dependent
odderon, which is given by the expectation value of a single
Wilson loop. This leads to a surprisingly simple picture of
transversely polarized hadrons at small x.
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