
Anisotropies of Gravitational-Wave Standard Sirens as a New Cosmological
Probe without Redshift Information

Toshiya Namikawa,1,2 Atsushi Nishizawa,3 and Atsushi Taruya4,5
1Department of Physics, Stanford University, Stanford, California 94305, USA

2Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
3Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125, USA

4Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
5Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo,

Kashiwa, Chiba 277-8583, Japan
(Received 21 November 2015; revised manuscript received 7 December 2015; published 24 March 2016)

Gravitational waves (GWs) from compact binary stars at cosmological distances are promising and
powerful cosmological probes, referred to as the GW standard sirens. With future GW detectors, we will be
able to precisely measure source luminosity distances out to a redshift z ∼ 5. To extract cosmological
information, previously proposed cosmological studies using the GW standard sirens rely on source
redshift information obtained through an extensive electromagnetic follow-up campaign. However, the
redshift identification is typically time consuming and rather challenging. Here, we propose a novel method
for cosmology with the GW standard sirens free from the redshift measurements. Utilizing the anisotropies
of the number density and luminosity distances of compact binaries originated from the large-scale
structure, we show that, once GWobservations will be well established in the future, (i) these anisotropies
can be measured even at very high redshifts (z ≥ 2), where the identification of the electromagnetic
counterpart is difficult, (ii) the expected constraints on the primordial non-Gaussianity with the Einstein
Telescope would be comparable to or even better than the other large-scale structure probes at the same
epoch, and (iii) the cross-correlation with other cosmological observations is found to have high-statistical
significance, providing additional cosmological information at very high redshifts.
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Introduction.—First detection of gravitational waves
(GW) by the advanced laser interferometer, aLIGO, has
opened a new window to probe unseen Universe [1]. With a
network of detectors including aVIRGO and KAGRA [2],
the GW would become a powerful and promising tool to
probe cosmology and astrophysics, complementary to or
even independent of the electromagnetic observations.
Indeed, the future ground- and space-basedGWexperiments
such as the Einstein Telescope (ET) [3], 40-km LIGO [4],
eLISA [5], and DECIGO [6], are planning to realize much
higher sensitivity, withwhichwe can observe a large number
of neutron star (NS) binaries at cosmological distances. One
important aspect of future GW observations is that one
would be able to measure the luminosity distance to each
binary source (so-called standard sirens) with an unprec-
edented precision, fromwhich the cosmic expansion history
can be accurately determined, e.g., Refs. [7–12]. In addition,
measurements of these GWs will be very useful to study the
gravitational lensing effect induced by the Large-Scale
Structure (LSS) by looking at the anisotropies of the
observed luminosity distances [9,13–15]. The use of the
LSS-induced anisotropies on other cosmological probes has
been also studied in Refs. [16,17] in a different context.
Nevertheless, one crucial assumption behind these studies

is that redshift information or a corresponding distance

measure other than luminosity distance are a priori known
because GW observation alone is not sensitive to source
redshift. However, the source identification and redshift
measurement with electromagnetic (EM) follow-up observa-
tions are rather challenging, and extensive follow-up cam-
paigns are required. In particular, the EM observation to
identify the host galaxy of each compact binary would
be very difficult at higher redshifts [18], and the feasibility
of source identification largely depends on the emission
mechanismof theEMcounterparts.As discussed inRef. [19],
the success rate of identification is estimated to be∼10−4 from
galaxy catalogs of future surveys and∼10−3 from coincident
searches of short gamma-ray bursts with gamma-ray tele-
scopes. To circumvent the situations, alternative methods
have been proposed. Reference [20] presents a statistical
method without identifying an EM counterpart, assuming a
redshift distribution based on a complete galaxy catalog.
References [21,22] assume the equation of state of neutron
stars and/or a narrow distribution of NS mass to infer the
redshift of each source. However, the reliability of redshift
estimation largely depends on the underlying assumptions.
In this Letter, we propose a novel approach to pursue the

cosmology with the GW standard sirens without any
assumptions for redshift information. The proposed method
is to utilize anisotropies in the observables induced by
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the LSS. The distribution function is anisotropic due to the
clustering of the NS binaries by the fluctuations of the
gravitational potential. The LSS also induces the gravita-
tional lensing, and the measured luminosity distance is
modified. These anisotropic signals contain rich cosmo-
logical information helpful to constrain the cosmic expan-
sion history and structure formation. One remarkable
difference from the previous studies is that the present
method directly offers a redshift-free measurement of the
anisotropies at high statistical significance. The measured
signal is expected to be powerful to constrain cosmology
especially at the distant universe. In the followings, we
discuss how the LSS induces the anisotropies in the
observables constructed from GW signals.
Anisotropies induced by the LSS.—An observable con-

sidered in this Letter is a distribution of NS binaries per
luminosity distanceNðD;ΩÞ as a function of their luminosity
distance D and direction Ω. Hereafter, we denote the argu-
ments by x ¼ ðD;ΩÞ. We then define a normalized distribu-
tion function, pðxÞ≡ NðxÞ= R dDNðxÞ. At each angular
pixel, observedbinaries are divided into subsamples according
to their luminosity distance. We denote, respectively, byDmax

i
andDmin

i the maximum and minimum values of the observed
luminosity distance in the ith luminosity distance bin.
There are two types of LSS-induced anisotropies in the

observables. The clustering of the NS binaries at each
direction causes the fluctuations in NðxÞ. The observed
luminosity distance D should also have explicit directional
dependence by the gravitational lensing of the LSS, and is
related to the original luminosity distance D̄ (in the absence
of the lensing effect) through (e.g., Refs. [13,23])

DðxÞ ¼ D̄½1þ κðx̄Þ�; (x̄ ¼ ðD̄;ΩÞ): ð1Þ
The quantity κðxÞ is the lensing convergence induced by the
gravitational potential of the LSS. The lensing effect on the
trajectory of GW propagation is at second order in κ, and is
ignored in the following derivation.
To discuss the feasibility of measuring the anisotropies

from the LSS, we construct an estimator based on the
observed luminosity distance. First, we may take the
average of D within the ith luminosity-distance bin at
each angular direction Ω:

d̂iðΩÞ ¼
Z

Dmax
i

Dmin
i

dDDpðxÞ: ð2Þ

Further averaging d̂iðΩÞ over the entire sky, we obtain a
mean luminosity distance d̂i at the ith bin. We then estimate
the fluctuation in the ith luminosity-distance bin at each
direction by taking the difference d̂iðΩÞ − d̂i. Thus, a
simple dimensionless estimator for the LSS-induced anisot-
ropies ŝ is introduced:

ŝiðΩÞ≡ d̂iðΩÞ − d̂i
d̂i

: ð3Þ

This quantity is proportional to the number density of the
NS binaries, and also probes the lensing modification to the
luminosity distance. Therefore, the above quantity is one of
the estimators to probe the LSS anisotropies of both the
clustering and lensing.
To understand how the estimator ŝi is sensitive to the

cosmology, we rewrite Eq. (3) in terms of the fluctuations of
the number density δ and lensing convergence field κ
generated by theLSS.Here, and inwhat follows,we consider
the terms up to the first order of δ and κ. Unlike the methods
using the source redshift information, the source distribution
is given as a function of the observed luminosity distance. Let
us recall that the observed number distribution is modified
by the lensing effect. It is related to the unlensed binary
distribution p̄ through the number conservation

pðxÞdΩdD ¼ p̄ðD̄Þ½1þ δðx̄Þ�dΩdD̄: ð4Þ
Here the fluctuations of the unlensed quantity δðx̄Þ come
from the effect of the NS-binary clustering. Introducing a
dimensionless quantity nðxÞ≡DpðxÞ, the above equation
implies

nðxÞ ¼ ðdD̄=dDÞ½1þ κðx̄Þ�n̄ðD̄Þ½1þ δðx̄Þ�
≃ ½1 −Dκ0ðxÞ�n̄½D=(1þ κðxÞ)�½1þ δðxÞ�; ð5Þ

where the prime denotes the derivativewith respect toD, and
we use Eq. (1) and ignore higher-order terms of the fluctua-
tions. Substituting the above equation into Eq. (2), we find

d̂iðΩÞ ¼
Z

Dmax
i

Dmin
i

dDn̄

�
D

1þ κðxÞ
�
½1þ δðxÞ −Dκ0ðxÞ�: ð6Þ

Averaging d̂iðΩÞover all directionsΩ,we obtain a theoretical
expression for the averaged luminosity distance as

d̂i ¼
Z

Dmax
i

Dmin
i

dDn̄ðDÞ≡ d̄i: ð7Þ

Note that we implicitly assumed that the average of κðxÞ over
the entire sky becomes zero. On the other hand, the
luminosity-distance anisotropies are obtained by expanding
Eq. (6) up to the first order of κ and δ as

d̂iðΩÞ≃ d̄i þ
Z

Dmax
i

Dmin
i

dDn̄ðDÞ½δðxÞ þ γðDÞκðxÞ�: ð8Þ

Here we define γðDÞ≡ 1þD½δDðD −Dmin
i Þ − δDðD −

Dmax
i Þ�with δD being the delta function. The above equation

leads to

ŝiðΩÞ ¼
1

d̄i

Z
Dmax

i

Dmin
i

dDn̄ðDÞ½δðxÞ þ γðDÞκðxÞ�: ð9Þ

The anisotropic signal ŝi statistically contains rich cos-
mological information. To extract the information, we may
move to the harmonic space, and define the angular power
spectrum, Ĉ

sisj
l ≡Pl

m¼−lðŝi;lmŝ�j;lm þ c:c:Þ=½2ð2lþ 1Þ�,
where ŝi;lm is the spherical harmonic coefficient of the
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signal. Taking the ensemble average of this, the power
spectrum is theoretically expressed as

C
sisj
l ≡ hĈsisj

l i ¼
Z

Dmax
i

Dmin
i

dD1

d̄i

Z
Dmax

j

Dmin
j

dD2

d̄j

× n̄ðD1Þn̄ðD2ÞfCδ1δ2
l þ γðD1ÞγðD2ÞCκ1κ2

l

þ γðD1ÞCδ2κ1
l þ ð1↔2Þg: ð10Þ

Here, Cδδ
l , C

δκ
l , and C

κκ
l are the auto and cross angular power

spectra of the number density fluctuations and lensing con-
vergence, given by hXlmðD1ÞY�

l0m0 ðD2Þi ¼ δll0δmm0CX1Y2

l ,
with X and Y being either δ or κ. The information on the
cosmic expansion and the growth of structure is encapsu-
lated in these power spectra. In computing the above
quantities theoretically, we need to know the unlensed
binary distribution n̄ðD̄Þ, which is not the actual observ-
able. At first order in δ and κ, however, it can be estimated
by averaging the observed distribution over the entire sky.
Signal-to-noise ratio.—Feasibility to measure the power

spectrum largely depends on the noise properties of ŝi. One
important noise is the measurement error of the luminosity
distance coming from the limited sensitivity of the GW
detector. Let us denote this measurement error for each source
by ϵ ¼ δD=D. For simplicity, we assume that ϵ is the random
Gaussian field with zero mean, independently of the angular
position, and it does not correlate between different GW
sources. The magnitude of the error ϵ does actually depend
notonlyon thedetector sensitivitybutalsoonhowfareachGW
source is.Toestimate theexpectedsizeofϵ,weconsider theET,
and adopt the sky-averaged sensitivity in Ref. [24]. For each
binary source, we assume the restricted 1.5 post-Newtonian
waveform, setting the spin parameter to zero. Then, the size of
the error ϵ is estimated as a function of luminosity distance
based on the Fisher matrix analysis presented in Ref. [19].
Oncewe obtained the error ϵ, we propagate it to the noise of

LSS-inducedanisotropies as follows. Ignoring theLSSeffects,
the measured luminosity distance is given byD ¼ D̄ð1þ ϵÞ.
This produces an error in the luminosity distance of Eq. (2), as

δd̂iðΩÞ ¼
Z

Dmax
i

Dmin
i

dDfn̄ðDÞ − n̄½D=ð1þ ϵÞ�g

≃
Z

Dmax
i

Dmin
i

dDn̄0ðDÞDϵþOðϵ2Þ: ð11Þ

On the other hand, the noise in the mean distance d̂i, obtained
by further averaging d̂iðΩÞ over the entire sky, would be of
the secondorder of ϵ, and it canbe ignored. Thus, fromEq. (3),
the noise in ŝ is estimated to be δŝiðΩÞ≃ δd̂iðΩÞ=d̄i.
This produces a shot noiselike contribution, and leads to a
systematic offset in the power spectrum, i.e.,
hĈsisj

l i → C
sisj
l þ δijðσ2i =NiÞ, where σ2i is defined by

σ2i ¼
1

d̄2i

Z
Dmax

i

Dmin
i

dDp̄ðDÞ
�
n̄0ðDÞ
p̄ðDÞ

�
2

D2σ2ðDÞ; ð12Þ

with σðDÞ being the rms of ϵ estimated based on the Fisher
matrix. TheNi is themean number density of GW sources per
steradian at the ith bin.
Note that the uncertainty coming from the above con-

tribution still remains nonvanishing even if we subtract the
mean value from the measured power spectrum, and thus
needs to be properly taken into account in the statistical
analysis. Hence, including further the uncertainty coming
from the cosmic variance, the cumulative signal-to-noise
ratio (SNR) for the LSS-induced anisotropies at the ith bin
ŝi is defined by

�
S
N

�
2

<l
≡X

l

2lþ 1

2

�
Csisi
l

ðσ2i =NiÞ þ Csisi
l

�
2

: ð13Þ

Note that the key inputs to determine SNR are σðDÞ
and pðDÞ.
Figure 1 shows the angular power spectrum and SNR of

the LSS-induced anisotropies ŝi at each luminosity distance
bin, plotted against maximum multipoles used in the
analysis. Here, we divide measured luminosity distances
into five bins with equal number of binary sources, among
which the results at representative three bins are particu-
larly shown. The power spectra Csisi

l are computed with the
CMB Boltzmann code CAMB [25], assuming the flat
Lambda-CDM model with fiducial cosmological parame-
ters consistent with the seven-year WMAP results [26],
using HALOFIT for computing the nonlinear matter power
spectrum [27,28]. The number distribution of binaries is
computed using the fitting formula for the NS-NS merger
rate in Ref. [29] normalized by the current merger rate,
_n0 ¼ 10−6 Mpc−3 yr−1 [30], which is an intermediate value
among several predictions. The power spectrum of the
number density fluctuation is computed using a linear bias
model with a redshift dependence, parametrized by
bðzÞ ¼ b0 þ bz=D, where D is the growth function
[31,32]. The fiducial values of the bias parameters are
b0 ¼ bz ¼ 1. The resultant SNRs in Fig. 1 are increased
monotonically up to l > 1000 and they look quite similar.
With enough angular resolution of GW detectors, the
detection of the LSS-induced anisotropies is highly antici-
pated out to rather distant sources.
To better resolve the source position, however, we at least

need three ET-like detectors at different sites. This situation
may be optimistic, but has been assumed in the previous
studies using EM counterparts of GW sources. Indeed, the
determination of the source position is indispensable for the
cosmology with standard sirens, and we just follow the
assumption of three ET-like detectors at the same sites as
aLIGO and VIRGO. Then, based on Ref. [33], the angular
resolutions for GW sources at z ¼ 1, 2, and 3 are estimated
to be ∼2.0, 3.2, and 3.3 deg, respectively. The corresponding
maximummultipoles become lmax ∼ 90, 57, and 54. Thus, a
network of ET-like detectors is sufficient to provide an
opportunity to constrain cosmology even at higher redshifts.
This is rather contrasted to the previous study using redshift
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information, since identification of EM counterparts
becomes harder as increasing the redshift. Since the SNR
is limited by the cosmic variance, the estimated value of
SNR at lmax ∼ 100 almost remains the same, irrespective of
the uncertainties in the overall merger rate and σðDÞ. Note
that for the space-based GW detector like DECIGO, the
angular resolution would be much better even at z > 2, and
down to ∼0.027 deg2 (lmax∼1000) [9].
Cosmological implications.—A statistically significant

detection of the LSS-induced anisotropies has a potential to
tightly constrain cosmology. Since the signal is expected
to be statistically high even at distant luminosity distance
bins (i.e., high redshift), the LSS-induced anisotropies
would be powerful to constrain the early cosmic evolution.
One interesting application may be the primordial non-
Gaussianity, which can be imprinted on the large-scale
clustering at higher redshifts through the scale-dependent
galaxy bias (e.g., Refs. [34,35]). The leading-order effect of
the primordial non-Gaussianity is characterized by the
parameter fNL [36], and by looking at LSS-induced
anisotropies at lower multipoles, a strong constraint on
fNL will be obtained. Taking a full covariance matrix of the
LSS-induced signals ŝi up to lmax ¼ 100, we estimate the
expected constraints on the fNL based on the Fisher matrix
analysis. To be specific, in the Fisher matrix, we consider
the five luminosity-distance bins as demonstrated in Fig. 1.
We only marginalize three parameters fNL, b0, and bz, and
compute the expected 1σ errors. Note that degeneracy
between fNL and other cosmological parameters are very
weak and we consider only these parameters [32]. The

Fisher matrix analysis reveals that the marginalized error
σðfNLÞ ¼ 0.54. This constraint is roughly comparable to or
even better than those obtained from the future LSS surveys
[37]. Discarding the two-distant bins still leads to a severe
constraint, σðfNLÞ ¼ 1.2, indicating that primordial non-
Gaussianity will be robustly constrained irrespective of a
large uncertainty in the binary distribution.
The LSS-induced anisotropies would be also useful for

cross-correlation studies with other cosmological probes.
The interesting counterpart of the cross correlation would
be the gravitational lensing of the cosmic microwave
background (CMB) and weak lensing signals from galaxy
surveys. Among the two contributions in the LSS-induced
anisotropies of standard sirens [see Eq. (9)], the former
cross correlation picks up the clustering term in the
luminosity distance anisotropies, and it provides a tomo-
graphic view of the galaxy clustering at higher redshifts.
We find that the SNR at the most distant bin would be 31
and 43 combined with the Planck [38] and CMB Stage-IV
[39], respectively. On the other hand, the latter cross
correlation enables us to extract the pure lensing signals
in the luminosity distance anisotropies, since the clustering
term in Eq. (9) is mostly uncorrelated between different
redshifts. With the future lensing measurement by Euclid
[40], the SNR is found to be 16.
Discussion.—So far, we have considered the NS binaries

as the representative GW standard sirens, but the proposed
method can be also applied to other GW sources which
are not necessarily accompanied by EM counterparts.
Examples are black-hole (BH) binaries and NS-BH binaries
[30]. Combining these binaries with NS binaries would
certainly increase the SNR of the LSS-induced anisotro-
pies, further improving constraining power on cosmology.
Potential systematics to the LSS-induced anisotropies

may come from the luminosity distance estimation to each
GW source. In our analysis, the luminosity distance error
was estimated based on the averaged GW waveform over
the inclination angle of NS binary, assuming the isotropic
antenna pattern averaged over the sky. The antenna pattern
of a GW detector is, however, anisotropic, and needs to be
properly taken into account in practical data analysis.
Further, the nonvanishing inclination of the NS binary is
known to produce a strong parameter degeneracy with the
luminosity distance [41]. This degeneracy can increase the
measurement uncertainty in the luminosity distance espe-
cially for low SNR GW sources, potentially leading to a
biased estimation of the anisotropic signal. Following
Ref. [41], we estimate the increase of the uncertainty in
the luminosity distance due to the degeneracy, and find that
the uncertainty increases at most by a factor of 2. Since the
detection significance of the LSS-induced anisotropies is
almost determined by the cosmic variance, the degeneracy
has negligible impact on our results.
Summary.—We proposed a novel method to probe

cosmology from the GW standard sirens without redshift
information. A key observable is the anisotropies in the

FIG. 1. Angular auto-power spectra with expected 1σ statistical
errors (top) and the cumulative SNR of the LSS-induced
anisotropies (bottom) with Δl ¼ 1. Assuming the three-year
observation with the ET, we divide measured luminosity dis-
tances into five contiguous bins with equal number of binary
sources. The angular power spectrum and SNR is then computed,
and plotted as a function of the maximum multipole, lmax. The
dashed lines show the lensing contributions. The vertical axis at
l ¼ 100 corresponds to the angular resolution of the ETwhile the
resolution of DECIGO is approximately l ¼ 1000.
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number distribution and luminosity distances to each GW
source, arising from the clustering and lensing effect of the
LSS. Based on a simple estimator given at Eq. (3),
feasibility to detect the LSS-induced anisotropies has been
discussed, and we found that, via a network of ET-like
detectors, once GW observations will be well established
in the future, 1. The anisotropies at very high redshift
(z > 2) can be detected at high statistical significance
(SNR≳ 100), 2. Constraining power on the primordial
non-Gaussianity is roughly comparable to or even better
than those from the future LSS surveys, 3. Cross correlation
with other cosmological probes such as CMB and galaxy
weak lensing would be also detectable at high significance
by combining future CMB experiments and galaxy surveys
observing at the same epoch.
Albeit simple, the present method offers a direct way to

probe cosmology only from the GWmeasurement, and this
would provide new insight into the formation and evolution
of large-scale structure, definitely complementary to the
EM observations.

This work is supported in part by JSPS Postdoctoral
Fellowships for Research Abroad No. 26-142 (T. N.).,
No. 25-180 (A. N.). This work is in part supported by
MEXT KAKENHI (15H05889 for A. T.).

Note added—Recently, the first detection of GW from binary
BH has been reported [1], and this enlarges the future
prospect for measuring anisotropic signals. First, the detec-
tion suggests a rather higher merger rate for binary BHs, 2-
400 Gpc−3 yr−1, indicating that even the second-generation
GW detectors have a potential to detect the anisotropies of
binary BH sources. A high merger rate also suggests that a
large number of binary BHwill be observed at milli-Hz band,
andwith the eLISA,most of the extra-galactic sources will be
spatially resolved [42] (see [43] for Galactic BH binaries).
This implies that in an optimistic case, a single ET-like
detector is sufficient to detect the anisotropic signals in
combination with the eLISA measurements.
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