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Quantum metrology protocols allow us to surpass precision limits typical to classical statistics. However,
in recent years, no-go theorems have been formulated, which state that typical forms of uncorrelated noise
can constrain the quantum enhancement to a constant factor and, thus, bound the error to the standard
asymptotic scaling. In particular, that is the case of time-homogeneous (Lindbladian) dephasing and, more
generally, all semigroup dynamics that include phase covariant terms, which commute with the system
Hamiltonian. We show that the standard scaling can be surpassed when the dynamics is no longer ruled by a
semigroup and becomes time inhomogeneous. In this case, the ultimate precision is determined by the
system short-time behavior, which when exhibiting the natural Zeno regime leads to a nonstandard
asymptotic resolution. In particular, we demonstrate that the relevant noise feature dictating the precision is
the violation of the semigroup property at short time scales, while non-Markovianity does not play any
specific role.
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Introduction.—Parameter estimation, ranging from the
precise determination of atomic transition frequencies to
external magnetic field strengths, is a central task in modern
physics [1–7]. Quantum probes made up of N entangled
particles can attain the so-called Heisenberg limit (HL),
where the estimation mean squared error (MSE) scales
as ∼1=N2, as compared with the standard quantum limit
(SQL) ∼1=N of classical statistics [8].
Heisenberg resolution relies on the unitarity of the time

evolution. In realistic situations, however, quantum probes
decohere as a result of the unavoidable interaction with the
surrounding environment [9]. Such interactions can have a
dramatic effect on estimation precision—even infinitesi-
mally small uncorrelated dephasing noise, modeled as a
semigroup (time-homogeneous-Lindbladian) evolution
[10], forces the MSE to eventually follow the SQL [11].
This result was proven to be an instance of the quantum
Cramér-Rao bound (QCRB) [12] for generic Lindbladian
dephasing and, thus, holds even when using optimized
entangled states and measurements [13–16]. The question
then arises, what is the ultimate precision limit when
the noisy time evolution is not governed by a dephasing
dynamical semigroup [13–26]? The SQL has been shown
to be surpassable in the presence of time-inhomogeneous
(nonsemigroup) dephasing noise [24], noise with a par-
ticular geometry [25], and correlated dephasing with [27]
and without [28] memory, or when the noise geometry
allows for error correction techniques [29,30].
Here, we derive the ultimate lower bounds on the MSE

for the noisy frequency estimation scenario depicted in
Fig. 1 where probe systems are independently affected by

the decoherence. In particular, we focus on uncorrelated
phase-covariant noise, that is, noise types commuting with
the parameter-encoding Hamiltonian, as these underpin
the asymptotic SQL-like precision in the semigroup case
[16,25]. Yet, most importantly, we allow for any form of
time inhomogeneity and non-Markovian features in the
noise. Our results show that, when moving away from the
semigroup regime, entanglement generally improves
the precision beyond the constant-factor enhancement, so
that the SQL is truly overcome. As a special case, we
confirm the conjecture made in [24], where, by considering
a Ramsey interferometry scheme and nonsemigroup
dephasing dynamics, a 1=N3=2 error scaling was shown
to be achievable. This was argued to be a consequence of
the Zeno regime at short time scales. The generality of this

FIG. 1. Noisy frequency estimation scenario. N qubit probes
sense a parameter ω following a preparation in a state ρð0Þ,
including an arbitrary number NA of ancillary particles potentially
entangled with the sensing probes. During the evolution, the
probes are subject to uncorrelated noise and, after time t, the
whole system, in state ρωðtÞ, is measured. The protocol is repeated
T=t times, with T ≫ t, to construct a frequency estimate ωN .
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scaling has been recently verified for pure dephasing noise
[31]. We formally prove the emergence of non-SQL scaling
for any nonsemigroup phase covariant noise. We demon-
strate that it is solely the short-time expansion of the
effective noise parameters that determines the ultimate
attainable precision. In particular, any memory (non-
Markovian) effects, which may be displayed by the system
at later times, are irrelevant for the asymptotic N limit.
Noisy frequency estimation.—In a typical frequency

estimation setting, a parameter ω is unitarily encoded on
N sensing particles (probes), specifically qubits, over the
interrogation time t during which the probes are also inde-
pendently disturbed by the decoherence [11,13]. As depicted
in Fig. 1, we generalize such a setup to allow for an arbitrary
number NA of ancillary particles, that can be initially
entangled with the probes and measured at the end of the
protocol. Hence, the combined final state of the system reads

ρωðtÞ ¼ ΛωðtÞ⊗N ⊗ 1⊗NA ½ρð0Þ�; ð1Þ
with ρð0Þ being the initial state, and ΛωðtÞ a completely
positive and trace preserving (CPTP) linear map [32] repre-
senting the identical, but independent, evolutionof eachprobe
[33]. We assume full control and noise-free evolution for
the ancillae, so as to allow for single-step error-correction
protocols [30]. The N dependent parameter estimate, ωN ,
relies on sufficiently large statistical data after performingT=t
repetitions, provided the total experimental time T ≫ t.
We quantify the performance of the estimation protocol

by the MSE, Δ2ωN—describing the average deviation of
the estimate from the true value. Crucially, requiring
unbiasedness and consistency for the estimate, the
QCRB directly provides us with the ultimate lower bound
on the MSE that is optimized over all potential measure-
ment strategies [12]. Hence, possessing, also, the freedom
to adjust the single-shot duration time t, the ultimate
attainable precision can be written as

Δ2ωNT ≥ min
t

t
FQ½ρωðtÞ�

; ð2Þ

where FQ½ρωðtÞ� is the quantum Fisher information (QFI)
with respect to the estimated parameter ω encoded in the
final state. Importantly, the t minimizing the rhs in Eq. (2),
i.e., the optimal single-shot duration, generally depends on
the system size, and thus, we denote it as toptðNÞ.
Phase covariant dynamics.—The frequency parameter ω

is unitarily encoded within the phase, ωt, accumulated
during the free evolution of the qubit probe, which, in
the Bloch ball picture, corresponds to a rotation around a
known direction—z in Fig. 2. We consider systems
exhibiting uncorrelated forms of noise that commute with
such rotations, which formally correspond to the so-called
phase covariant qubit maps [34]. Such noise types are
known to most severely limit the attainable precision in the
case of semigroup dynamics, for which they constrain the

quantum enhancement to a constant factor above the SQL
[13–16]. Although such negative conclusions cannot be
drawn for other less severe but still semigroup noises, i.e.,
purely transversal [25] and correlated [28], the phase
covariant noise, if present, no matter how weak, will
always asymptotically dominate and limit the ultimate
quantum improvement to a constant factor [16,25]. Thus,
in what follows, we focus on the frequency estimation
scenario of Fig. 1 in the presence of general independent,
identical, and phase covariant (IIC) noise, where each
single probe at any instance of time may be described
by the action of a map ΛωðtÞ ¼ UωðtÞ∘ΓðtÞ ¼ ΓðtÞ∘UωðtÞ,
with UωðtÞ and ΓðtÞ being its unitary encoding and
ω-independent dissipative parts, respectively. We fix
UωðtÞ½ϱ� ¼ e−ði=2Þωσztϱeði=2Þωσzt and use the affine repre-
sentation of qubit maps [35–39] to express the most general
phase covariant ΛωðtÞ as a matrix [33]

ΛωðtÞ ¼

0
BBB@

1 0 0 0

0 η⊥ðtÞ cosϕðtÞ −η⊥ðtÞ sinϕðtÞ 0

0 η⊥ðtÞ sinϕðtÞ η⊥ðtÞ cosϕðtÞ 0

κðtÞ 0 0 η∥ðtÞ

1
CCCA;

ð3Þ

which acts on a four-component Bloch vector. As depicted
in Fig. 2, the qubit evolution amounts then to: a rotation
around the z axis by an angle ϕ containing the parameter
encoding [ϕðtÞ ¼ ωtþ θðtÞ], a contraction in the xy plane
by a factor 0 ≤ η⊥ ≤ 1, a contraction in the z direction by a
factor 0 ≤ jη∥j ≤ 1 (η∥ < 0 case corresponds to an addi-
tional reflection with respect to the xy plane), and a
displacement in the z direction by −1 ≤ κ ≤ 1. The map
in Eq. (3) fulfils the CPTP condition as long as η∥ � κ ≤ 1

and 1þ η∥ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4η2⊥ þ κ2

p
.

FIG. 2. Phase covariant quantum maps. Bloch ball representa-
tion of a qubit noisy evolution, ΛωðtÞ, that commutes with the
rotation about the z axis by an angle ωt, which represents the
parameter encoding. The overall effect of the noise is to shrink
the ball by factors η∥ðtÞ, η⊥ðtÞ in the vertical direction and the
horizonal plane, respectively, as well as to displace its the center
by κðtÞ and to further rotate it about the z axis, so that the global
rotation angle is ϕ ¼ ωtþ θ.
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It is important to stress that all phase covariant dynamics
ϱðtÞ ¼ ΛωðtÞ½ϱð0Þ� can be put on physical grounds by
considering the corresponding time-local master equation,
which is of the form

d
dt

ϱðtÞ ¼ −
i
2
½ωþ hðtÞ�½σz; ϱðtÞ� þ γzðtÞ½σzϱðtÞσz − ϱðtÞ�

þ γþðtÞ
�
σþϱðtÞσ− −

1

2
fσ−σþ; ϱðtÞg

�

þ γ−ðtÞ
�
σ−ϱðtÞσþ −

1

2
fσþσ−; ϱðtÞg

�
: ð4Þ

The proof and the link between θ, η⊥, η∥, κ and h, γz, γþ, γ−
are given in [33]. Phase covariant dynamics describe any
physical evolution that may arise from combinations of
time-varying dephasing, absorption, and emission proc-
esses, as well as Lamb shift corrections to the free
Hamiltonian [9]. Moreover, Eq. (4) allows for the quanti-
tative characterization of general non-Markovian effects
[40,41]. In the special case of positive constant rates (time
homogeneity), Eq. (4) provides the generator of any phase
covariant CPTP semigroup [42].
Bounding the ultimate precision.—Having fully charac-

terized the class of qubit IIC dynamics, we can now state
the main result of the Letter. Given N qubit probes and NA
ancillae evolving according to Eq. (1), with the single qubit
dynamics given by phase covariant maps ΛωðtÞ as in
Eq. (3), and provided that at all times (∀t > 0)
η⊥ðtÞ < 1, the MSE in estimating the frequency ω is
asymptotically determined by the short-time expansion
of the noise parameters

η⊥ðtÞ ¼ 1 − α⊥tβ⊥ þ oðtβ⊥Þ; κðtÞ ¼ ακtβκ þ oðtβκÞ;
η∥ðtÞ ¼ 1 − α∥tβ∥ þ oðtβ∥Þ; ð5Þ

and it satisfies the following inequality:

lim
N→∞

Δ2ωNT

N−ð2β⊥−1Þ=β⊥ ≥
α1=β⊥β⊥

ðβ⊥ − 1Þðβ⊥−1Þ=β⊥ ¼ D; ð6Þ

where D > 0 and

α ¼

8>>><
>>>:

2α⊥ β⊥ < β∥;

2α⊥ − α∥
2

β⊥ ¼ β∥ < βκ;

max
n
2α⊥ − α∥

2
− jακ j

2
; jακ j

4

o
β⊥ ¼ β∥ ¼ βκ;

ð7Þ

Crucially, as (see below) the bound in Eq. (6) is always
attainable up to a constant factor, the asymptotic precision
is fully determined by the short-time expansion of the
radius in the plane perpendicular to the rotation axis, which
fixes the asymptotic scaling to 1=Nð2β⊥−1Þ=β⊥ . For semi-
group dynamics (β⊥ ¼ 1), one accordingly recovers the
SQL-like 1=N limit, while, with increasing β⊥, one finds a
progressively more favorable scaling that tends to HL for
unrealistic β⊥ → ∞. Besides the assumption of having IIC

noise, the only condition assuring the bound (6) to be valid
is η⊥ðtÞ < 1. In fact, if η⊥ðtÞ ¼ 1, then by the CPTP-
property η∥ðtÞ ¼ 1 and κðtÞ ¼ 0. In other words, a “full
revival” of the Bloch vector length occurs, and the only
effect of the interaction with the environment is a rotation
about the z axis by an angle θ. Not surprisingly, the best
estimation strategy is, then, to measure the frequency at
such pseudonoiseless time, when the HL is attainable.
However, such a behavior is quite unlikely when dealing
with open systems subject to realistic sources of noise [9].
The sketch of the proof is given below, while a complete

version is in [33]. First, we fix the evolution time t (and
omit it for simplicity), to use the finite-N channel extension
method [15,19], which provides us with an upper bound
on the QFI already optimized over all the initial states

max
ρð0Þ

FQ½Λ⊗N
ω ⊗ 1⊗NA ½ρð0Þ��

≤ 4Nmin
fKig

f∥A∥þ ðN − 1Þ∥B∥2g ¼ F↑: ð8Þ

The minimization above is performed over the Kraus repre-
sentations of the channel Λω½ϱ� ¼

P
iKiϱK

†
i , which refers

to a single probe; ∥ · ∥ denotes the operator norm, whereas
A ¼ P

i
_K†
i
_Ki and B ¼ P

i
_K†
i Ki with _Ki ≡ dKi=dω.

Identifying the optimal Kraus representation is usually
nontrivial; however, the numerical semidefinite programing
(SDP) methods introduced in [15] automatically provide the
correct ansatz,withwhichonemay then proceed analytically.
In [33], we deal explicitly with the general phase

covariant qubit maps. We additionally prove the convexity
of the bound (8) with respect to the mixing of quantum
channels, which allows us to analytically apply Eq. (8) to
any map Λω of the form in Eq. (3), after adequately
decomposing it into an optimal mixture of unital (κ ¼ 0)
and amplitude damping channels (η∥ ¼ η2⊥ ¼ 1 − κ). Here,
for simplicity, we focus on unital channels: the general
upper bound (8) reduces to [33]

F↑
η∥;η⊥ ¼ t2N2

1þ NlðtÞ ; lðtÞ ¼ 1þ η∥ðtÞ − 2η⊥ðtÞ2
2η⊥ðtÞ2

: ð9Þ

Thus, substituting into Eq. (2), we obtain the precision
bound

Δ2ωNT ≥ min
t

1þ NlðtÞ
tN2

; ð10Þ
which, in the case of semigroup dynamics, coincides with
the asymptotically tight limit derived in [16].
First, beating the SQL-like scaling necessarily requires

limN→∞toptðNÞ ¼ 0. Assume, on the contrary, that the
optimal evolution time attains some t∞ > 0 as N → ∞.
Then, inspecting Eq. (9), one sees that the “no full-revival”
assumption η⊥ðt∞Þ < 1, along with the CPTP constraints,
implies lðt∞Þ > 0, and hence, Eq. (10) directly restricts the
precision to asymptotically follow 1=N. As a consequence,
we can focus on the short-time regime and expand η⊥ðtÞ,
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η∥ðtÞ as in Eq. (5) to get lðtÞ ¼ 2α⊥tβ⊥ − 1
2
α∥tβ∥ þ oðtβ⊥Þ.

From CPTP constraints, it follows that β⊥ ≤ β∥, and if
β⊥ ¼ β∥, then, additionally, α∥ ≤ 2α⊥. Hence, up to the
leading order: lðtÞ ¼ αltβ⊥ þ oðtβ⊥Þ, with αl ¼ 2α⊥ if
β⊥ < β∥, and αl ¼ 2α⊥ − α∥=2 if β⊥ ¼ β∥. Plugging the
above expansion into Eq. (10), we find that the minimum is
reached for

toptðNÞ ¼N→∞½αlðβ⊥ − 1ÞN�−1=β⊥ ; ð11Þ
which yields the bound (6) with α ¼ αl, correctly coincid-
ing with Eq. (7) for κ ¼ 0.
Attaining the ultimate precision.—As Eq. (8) provides

us only with an upper limit on the QFI, we still must
investigate the tightness of bound (6). Yet, also, the QCRB
(2), itself, is guaranteed to be saturable only in the limit of
infinite independent experimental repetitions T=t → ∞.
This issue is particularly important in the noiseless case,
when the minimization of the MSE (2) over t yields
topt ¼ T, indicating that a single experimental shot con-
suming all time resources should be performed [13]. The
QCRB is, then, not saturable, as can be proved by means
of a rigorous Bayesian approach [43]. Fortunately, in the
presence of IIC noise, the optimal single-shot duration, topt,
is independent of T and decays as N−1=β⊥ with N, see
Eq. (11), so that T=t always diverges as N → ∞.
Now, we show that the scaling exponent in Eq. (6) is

always correct, and it is only the constant D that, in some
cases, may be underestimated. Consider a GHZ state
jψGHZi ¼ 1=

ffiffiffi
2

p ðj0i⊗N þ j1i⊗NÞ. Thanks to its simple
structure, the expression for its QFI with respect to the
estimated ω can be analytically derived

FQ½Λ⊗N
ω ðψN

GHZÞ� ¼
t2N2η2N⊥

2−1−NðAN
−;− þ ANþ;− þ AN

−;þ þ ANþ;þÞ
;

ð12Þ
with A�;� ¼ 1� η∥ � κ. Focusing, again for simplicity, on
unital maps, expanding the above formula for short times
and using optimal tGHZðNÞ ¼ 1=ðαlβ⊥NÞ1=β⊥ that mini-
mizes asymptotically the QCRB for the GHZ-based sce-
nario, we arrive at

lim
N→∞

Δ2ωGHZ
N T

N−ð2β⊥−1Þ=β⊥ ¼ ðαlβ⊥eÞ1=β⊥ : ð13Þ

For the semigroup case (β⊥ ¼ 1), the asymptotic coeffi-
cient (13) differs by a factor e from D of Eq. (6)—a known
fact for the pure dephasing model [11,13] which may be
remedied by replacing GHZ with spin-squeezed states [17]
—yet the discrepancy decreases with increasing β⊥.
Crucially, Eq. (13) proves that the 1=Nð2β⊥−1Þ=β⊥ scaling
of the MSE predicted by Eq. (6) is always achievable when
κ ¼ 0; even more, such a claim can be proved to apply to all
phase covariant maps [33].

Role of non-Markovianity and Zeno regime.—We have
shown that, by going beyond the semigroup regime, one
can overcome the SQL for a relevant class of open system
dynamics. A natural question is whether non-Markovian
features are of some relevance. Since non-Markovianity is
typically associated with backflow of information to the
system of interest [40,41], onemay think that such recovered
information (also about the estimated parameter) could be
advantageous for metrological purposes, possibly leading to
improved scalings of the precision. Our results clearly
indicate that this is not the case. As any measurement
strategy outside the short-time regimewill be asymptotically
bounded by a 1=N scaling, to beat the SQLonemust perform
measurements on shorter and shorter time scales asN → ∞,
whatever the subsequent memory effects are. The attainable
asymptotic precision is then fully dictated by the time-
inhomogeneous, i.e., nonsemigroup, nature of the dynamics.
The characterization of nonsemigroup dynamics is a

complex task, which calls for a detailed knowledge of the
environmental properties, as well as the interaction mecha-
nism [9]. Yet, a general property of any evolution derived
exactly from the global (systemþ environment) unitary
dynamics is the quadratic decay of the survival probability
at short time scales—the emergence of the so-called
quantum Zeno regime [44]. For any phase covariant
ΛωðtÞ, such a quadratic decay implies that β⊥ ¼ 2 [33]
and Eq. (6) then reduces to limN→∞Δω2

NTN
3=2 ≥

ffiffiffi
α

p
.

Thus, we can conclude that the ultimate 1=N3=2 precision
scaling—provably attainable—is a general feature of any
reduced dynamics exhibiting the Zeno regime and phase
covariance. If we restrict to the specific case of pure
dephasing, we provide a further confirmation of the
conjecture made in [24] and, also, recently proved in [31].
Shabani-Lidar post-Markovian noise model.—To dem-

onstrate the applicability of our methods to general phase
covariant dynamics, we consider the post-Markovian
model of Shabani and Lidar [45] (SL), that has been
widely used to study nonsemigroup evolutions and their
non-Markovian properties [46], showing, e.g., the non-
equivalence between the trace distance [40] and the CP
divisibility [41] definitions of quantum non-Markovianity.
The SL model was originally formulated in terms of an
integrodifferential equation, relying on a given Lindblad
generator and a proper function memory kernel, the latter
enclosing the memory effects due to the interaction with the
bath. The SL model can also be formulated via a time-local
master equation, which has the form as in Eq. (4) and
contains all the emission, excitation, and dephasing con-
tributions, yet it is fully described by three parameters: γ0—
dissipation constant, γ—the effective memory rate, and
n—the mean number of excitations in the bath. The short-
time expansions in Eq. (5) of all the noise parameters is
quadratic in t, with coefficients: α∥ ¼ 2α⊥¼ð2nþ1Þγ0γ=2
and ακ ¼ −γγ0=2 [33]. The SL model, therefore, exhibits
the Zeno regime, which imposes the 1=N3=2 asymptotic
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precision scaling withD ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2nγγ0

p
in Eq. (6). On the other

hand, since the model yields a nonunital map, the GHZ-
achievable asymptotic constant has to be computed numeri-
cally, and can be approximated by

ffiffiffiffiffiffiffiffi
e=2

p
D. The SL model

is well suited to verify the performance of our methods at
finite N. In [33], we derive the corresponding analytic
expressions for the bound in Eq. (10) (generalized to the
nonunital case via the convexity of F↑) and the GHZ-
attainable precision, both of which we numerically opti-
mize over t for each N. We plot the results in Fig. 3 to show
their convergence to the correct asymptotic, analytical
expressions. Furthermore, we compare the semianalytical
bound with its numerically optimized SDP-based version
in Eq. (8), which achieves asymptotically only a slightly
tighter

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þγγ0
p

constant. The inset clearly confirms
the attainability of the 1=N3=2 precision scaling.
Conclusions.—We have derived a novel limit on the attai-

nable precision in frequency estimation, which holds for all
forms of phase covariant uncorrelated noise. Our results
show that, despite thenoiselessHLnot beingwithin reach, by
exploiting the nonsemigroup, time-inhomogeneous system
dynamics arising at short times in the Zeno regime, the
asymptotic SQL-like scaling of precision can be beaten. Any
measurement strategy performed on longer time scales is
ultimately limited by theSQL, irrespectively of possible non-
Markovian effects exhibited by the evolution.We leave, as an
open question, whether the asymptotic precision can be
further improved via general active-ancilla assisted schemes
[47], where the interplay between multistep unitary oper-
ations and memory effects in the probes evolution has to be
treated carefully [48].
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