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We establish an operational theory of coherence (or of superposition) in quantum systems, by focusing
on the optimal rate of performance of certain tasks. Namely, we introduce the two basic concepts
—“coherence distillation” and “coherence cost”—in the processing quantum states under so-called
incoherent operations [Baumgratz, Cramer, and Plenio, Phys. Rev. Lett. 113, 140401 (2014)]. We, then,
show that, in the asymptotic limit of many copies of a state, both are given by simple single-letter formulas:
the distillable coherence is given by the relative entropy of coherence (in other words, we give the relative
entropy of coherence its operational interpretation), and the coherence cost by the coherence of formation,
which is an optimization over convex decompositions of the state. An immediate corollary is that there
exists no bound coherent state in the sense that one would need to consume coherence to create the state,
but no coherence could be distilled from it. Further, we demonstrate that the coherence theory is generically
an irreversible theory by a simple criterion that completely characterizes all reversible states.
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Introduction.—The universality of the superposition
principle is the fundamental nonclassical characteristic of
quantum mechanics: Given any configuration space X, its
elements x label an orthogonal basis jxi of a Hilbert space,
and we have all superpositions

P
xψxjxi as the possible

states of the system. In particular, we could choose a
completely different orthonormal basis to express the super-
positions. However, often a basis is distinguished, be it the
eigenbasis of an observable or of the system’s Hamiltonian,
so that conservation laws or even superselection rules apply.
In such a case, the eigenstates jxi are distinguished as
“simple” and superpositions are “complex.” Indeed, in the
presence of conservation laws, structured superpositions
of eigenstates can serve as so-called “reference frames,”
which are resources to overcome the conservation laws
[1–3]. Based on this idea, Åberg [4] and, more recently,
Baumgratz et al. [5] have proposed considering any non-
trivial superposition as a resource and creating a theory in
which computational basis states and their probabilistic
mixtures are free, and operations preserving these “incoher-
ent” states are free as well. This suggests that coherence
theory can be regarded as a resource theory.
Let us briefly recall the general structure of a quantum

resource theory (QRT) and basic questions that should be
asked in a QRT through entanglement theory, a well-known
QRT. QRT has three ingredients: (1) free states (separable
states), (2) resource states (entangled states), and (3) the
restricted or free operations [local operations and classical
communication (LOCC)]. A prerequisite for a consistent
QRT is that no resource state can be created from any free
state under any free operation. QRT is then the study of
interconversion between resource states under free

operations. The pure resource states play a special role
and are muchmore preferable because, usually, they are used
to circumvent the restriction on operations (Bell states are
used in teleportation to overcome LOCC operations). So the
conversions between pure resource states andmixed ones are
amajor focus ofQRTs. A standard unit resourcemeasure can
be constructed if the conversions between pure states are
asymptotically reversible (entropy of entanglement of a
pure entangled state, with a Bell state as the unit). Then,
there are two basic processes that are well motivated: one is
the so-called resource distillation, the transformation from a
mixed resource state to the unit resource, and the other is
resource formation, the reverse transformation from the unit
resource to a mixed state (entanglement distillation and
entanglement formation). Because of the reversibility in the
pure state conversion, we need not worry about what kind of
pure state is the target, as they are equivalent up to the
transformation rate between them. Thus, twowell-motivated
quantities arise from the two basic processes, distillable
resource and resource cost, which have a clear operational
interpretation (distillable entanglement and entanglement
cost). The principal objective of the theory is the characteri-
zation of these two quantities. This is often a highly complex
problem, but resource monotones yield various limits on
possible transformations and achievable rates. Another basic
question in anyQRT is to askwhether the theory is reversible
or not. If the conversion between pure states is reversible,
then the reversibility problem is reduced to the question
regarding whether or not the optimal conversion rate in
the formation process is equal to that in the distillation. If a
QRT is reversible, a unique resourcemeasure exits, quantify-
ing the conversion rate between different states, so that
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everything about resource transformations is clear and
simple. However, if a QRT is irreversible, the phenomena
are ample, and further interesting questions can be asked,
for example, whether so-called bound resource states exist
as an analogue of bound entangled states [6,7], in the sense
that, from them, no resource can be distilled, but for which,
in order to create them, a nonzero resource is required.
Several QRTs were constructed along these lines, some of
them, indeed, irreversible: entanglement theory (with respect
to LOCC) [8,9], thermodynamics (with respect to energy-
conserving operations and thermal states) [10,11], and
reference frames (with respect to group-covariant operations)
[12], etc.
In this Letter, we establish an operational coherence theory

in the framework proposed in [5] and [4]. Namely, first, we
show that the conversion between the pure coherent states is
asymptotically reversible so that the standard unit coherence
measure exists. Then, we introduce the basic transformation
processes: coherence distillation and coherence formation,
from which two basic coherence measures naturally arise:
distillable coherence and coherence cost, with operational
interpretations. Remarkably, both are given by single-letter
formulas that, hence, make these quantities computable.
These results in turn allow us to formulate a simple criterion
todecidewhether a given state is reversible or not and to show
that there is no bound coherence. Although the main results
are in the asymptotic setting, we also get the single copy
conversion of pure states along the way. In the following,
we state and discuss our results carefully, while all proofs
are found in [13], Sec. B.
Coherence as a resource theory.—We follow the frame-

work of coherence theory by Baumgratz et al. [5]. Let fjiig
be a fixed basis in the finite dimensional Hilbert space.
The free states called incoherent states are those whose
density matrices are diagonal in the basis, being of the formP

ipijiihijwhere pi is a probability distribution, and the set
of incoherent states is denoted as Δ. The resource states
called coherent states are those not of this form. Quantum
operations are specified by a set of Kraus operators fKlg
satisfying

P
lK

†
lKl ¼ 1; a quantum operation can have

many different Kraus representations. The free operations,
called incoherent operations (IC), are those for which
there exist a Kraus representation fKlg such that
ð1=TrρK†

lKlÞKlρK
†
l ∈ Δ for all l and all ρ ∈ Δ. Such

a restriction guarantees that, even if one has access to
individual measurement outcomes l of the instrument
fKlg, one cannot generate coherent states from an inco-
herent state. Under this restriction, each Kraus operator is
of the form Kl ¼ P

icðiÞjjðiÞihij where jðiÞ is a function
from the index set of the basis, and cðiÞ are coefficients; we
call such Kraus operators incoherent, too. If not only Kl,
but also K†

l is incoherent, we call it strictly incoherent, and
the corresponding operation a strictly incoherent operation.
Strictly incoherent Kl are characterized by a one-to-one
jðiÞ function. Another equivalent form of a general

incoherent Kraus operator is K ¼ P
jjjihγjj, with jγji ∈

spanfjii∶i ∈ Sjg for a partition ½d� ¼ _⋃jSj.
We introduce some notation: ρ↦

IC
σ means there is an

incoherent operation T such that σ ¼ TðρÞ ¼ P
lKlρK

†
l;

if T is strictly incoherent, we write ρ↦
IC0

σ. If the trans-
formation is obtained probabilistically, i.e., if σ ∝ KlρK

†
l

and TrKlρK
†
l ≠ 0 for some l, we write ρ↦

pIC
σ and ρ↦

pIC0
σ,

for probabilistic incoherent and probabilistic strictly inco-
herent transformations, respectively. We define the deco-
hering operation ΔðρÞ ¼ P

ihijρjiijiihij, i.e., the diagonal
part of the density matrix. This makes the incoherent states
Δ the image of the map Δ, thus, justifying the slight abuse
of notation.
When we consider composite systems, we simply

declare as incoherent the tensor product basis of the local
bases; the incoherent operations are then defined with
respect to the tensor product basis. Notice that there are
several special incoherent transformations: phase and
permutation unitaries. In particular, in a two-qudit system,
controlled NOT (CNOT): jiijji↦jiijðiþ jÞmod di is an
incoherent operation, as it is simply a permutation of the
tensor product basis vectors [28,29]. In [13], Sec. C, we
discuss a slightly more general and flexible model.
Pure state transformations.—We start by developing

the theory of pure state transformations; the main result, in
this context, is that, in the asymptotic setting of many
copies, this becomes reversible, the rates governed by the
entropy of the decohered state, a quantity we dub entropy
of coherence. First, however, we review the situation for
exact single-copy transformations.
Observe a simple fact on ranks: Let φ be transformed to ψ

by an incoherent, or more generally, a probabilistic incoher-
ent operation, jψi ∝ Kjφi ≠ 0, for K ¼ P

icijjðiÞihij.
The rank r of ΔðφÞ is precisely the number of nonzero
diagonal entries of ΔðφÞ, which is the number of nonzero
terms in jφi ¼ P

i∈Rφijii, jRj ¼ r. Thus, jψi ∝ Kjφi ¼P
i∈RφicijjðiÞi has at most r ¼ jRj terms. This proves the

following.
Lemma 1.—If φ↦

pIC
ψ , then rankΔðψÞ ≤ rankΔðφÞ, i.e.,

the rank of the diagonal part of pure states cannot increase
under incoherent operations.
Theorem 2.—(cf. Du et al. [30].) For two pure statesψ and

φ, if ΔðψÞ≻ΔðφÞ, then there is an incoherent (in fact, a

strictly incoherent) operation: φ↦
IC0

ψ . Conversely, if φ↦
IC0

ψ ,

or if φ↦
IC
ψ and, in addition, rankΔðφÞ ¼ rankΔðψÞ, then

ΔðψÞ≻ΔðφÞ.
Here, the majorization relation for matrices ρ≻σ, means

that specðρÞ ¼ ~p ¼ ðp1 ≥ � � � ≥ pdÞ and specðσÞ ¼ ~q ¼
ðq1 ≥ � � � ≥ qdÞ are in majorization order [31–33]:
∀ t < d,

P
t
i¼1 pi ≥

P
t
i¼1 qi, and

P
d
i¼1 pi ¼

P
d
i¼1 qi.

As a consequence of Theorem 2, just as for pure state
entanglement [33], there is catalysis for pure state
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incoherent transformations, cf. [34]; in [35], examples,
such that initial and final states have equal rank, are given.
An immediate corollary of Theorem 2 is the following.
Corollary 3.—(Baumgratz et al. [5]) Let ρ be a state in

Cd, and Φd ¼ jΦdihΦdj ¼ ð1=dÞPd−1
i;j¼0 jiihjj. Then, there

is an incoherent operation transforming Φd to ρ.
This motivates the name maximally coherent state for

Φd. In addition to enabling the creation of arbitrary d-
dimensional coherent superpositions by incoherent means,
Φd also allows the implementation of arbitrary unitaries
U ∈ SUðdÞ [5]. Then, fixing the qubit maximally coherent
pure state Φ2 ¼ 1

2

P
1
ij¼0 jiihjj as a unit reference, we are

ready to consider asymptotic pure state transformations
with vanishing error as the number of copies goes to
infinity. As in information theory, entanglement theory, and
other similar cases (cf. [36,37]), this simplifies the picture
dramatically. Special cases are coherence concentration, the
transformation from a nonmaximally coherent pure state
to the unit coherent state, and coherence dilution, the
reverse one. To express our result, we introduce the entropy
of coherence for pure states as CðψÞ ¼ S(ΔðψÞ). Here,
SðρÞ ¼ −Trρ log ρ is the von Neumann entropy, where
logarithms are to base 2. Note, the maximum value of this
functional among d-dimensional states is attained on Φd:
CðΦdÞ ¼ log d, in particular CðΦ2Þ ¼ 1 for the unit coher-
ence resource.
Theorem 4.—(Yuan et al. [38]) For two pure states ψ

and φ and a rate R ≥ 0, the asymptotic incoherent trans-

formation ψ⊗n↦
IC

≈
1−ϵ

φ⊗nRas n → ∞; ϵ → 0, is possible if
R < ½CðψÞ=CðφÞ� and impossible if R > ½CðψÞ=CðφÞ�.
In particular, ψ can be asymptotically reversibly trans-

formed into Φ2, and vice versa, at the optimal rate CðψÞ.
Here, ρ ≈

1−ϵ
σ signifies that the two states have high fidelity:

Fðρ; σÞ ≥ 1 − ϵ (see [13], Sec. A, for details).
Now, we are ready to introduce two fundamental tasks

for arbitrary mixed states, namely asymptotic distillation of
ρ⊗n to Φ⊗nR

2 and the reverse the process of formation ρ⊗n

from Φ⊗nR
2 . Note, in this respect, the fundamental impor-

tance of Theorem 4, which shows that we could equiv-
alently select any pure coherent state ψ as a unit reference
for formation and distillation, and all rates would change by
the same factor ½1=CðψÞ�. It turns out that both quantities
have single-letter, additive expressions: the former is given
by the relative entropy of coherence, the latter by the
coherence of formation; both are additive. This is in marked
contrast to other resource theories, perhaps most promi-
nently, entanglement theory, in which the basic operational
tasks are only characterized by regularized formulas, and
the fundamental quantities, such as entanglement of for-
mation [39], relative entropy of entanglement [40], etc., are
not additive [41,42].
Distillable coherence.—The distillation process is the

process that extracts pure coherence from a mixed state by
incoherent operations. The distillable coherence of a state is

the maximal rate at which Φ2 can be obtained from the
given state.
Definition 5.—The distillable coherence of a state ρ is

CdðρÞ ¼ supR; subject to ρ⊗n↦
IC

≈
1−ϵ

Φ⊗nR
2 asn → ∞; ϵ → 0.

By definition, Cd naturally has an operational meaning
as the optimal rate of performance at a natural task.
Theorem 6 shows that the distillable coherence is given
by a closed-form expression.
Theorem 6.—For any state ρ, the distillable coherence

is given by the relative entropy of coherence: CdðρÞ ¼
CrðρÞ≔minσ∈ΔSðρ∥σÞ ¼ S(ΔðρÞ) − SðρÞ.
Here, Sðρ∥σÞ ¼ Trρðlog ρ − log σÞ is the quantum rela-

tive entropy. The relative entropy of coherence CrðρÞ is
introduced and studied in detail in [4,5]: first, it has a closed
formula CrðρÞ ¼ S(ΔðρÞ) − SðρÞ; second, it is convex
in the state; third, it is a coherence monotone, meaning
that CrðρÞ ≥ Cr(TðρÞ) for any incoherent transformation
TðρÞ ¼ P

lKlρK
†
l. In fact, it is even strongly monotonic

[5]: CrðρÞ ≥
P

lplCrðρlÞ, where plρl ¼ KlρK
†
l. But

it is only due to Theorem 6 that we can give it a clear
operational interpretation in the distillation process. Note
that, in concurrent independent work, Singh et al. [43]
show that the same quantity, CrðρÞ, also arises as the
minimum amount of incoherent noise that has to be applied
to the state to decohere it.
Coherence cost.—The formation process is that which

prepares a mixed state by consuming pure coherent states
under incoherent operations. The coherence cost is the
minimal rate at which Φ2 has to be consumed for preparing
the given state.
Definition 7.—The coherence cost of a state is defined as

CcðρÞ ¼ inf R; subject toΦ⊗nR
2 ↦

IC
≈
1−ϵ

ρ⊗nas n → ∞; ϵ → 0.
The next result shows that the coherence cost has a single-

letter formula, involving a simple entropy optimization.
Theorem 8.—For any state ρ, the coherence cost is given

by the coherence of formation, CcðρÞ ¼ CfðρÞ, where
CfðρÞ≔min

P
ipiS(Δðψ iÞ) subject to ρ ¼ P

ipijψ iihψ ij.
The coherence of formation is introduced in [4], where

its convexity and monotonicity were observed (see [13],
Lemma 13); however, its additivity was not remarked.
A priori, one might have expected the cost to be given by
the regularization of the coherence of formation, which
would have involved infinitely many optimization prob-
lems so that the evaluation of the operational cost had
become infeasible. Indeed, it is additivity that makes the
single-letter formulas in Theorem 6 and Theorem 8 avail-
able. Because of its importance, we state it as a theorem.
Theorem 9.—Both Cf and Cr are additive, i.e.,

Cfðρ⊗σÞ¼CfðρÞþCfðσÞ;Crðρ⊗σÞ¼CrðρÞþCrðσÞ.
Theorem 9 also means that the distillable coherence and

the coherence cost are also additive, so there are no super-
additivity or activation phenomena in the resource theory of
coherence, unlike the theory of entanglement [41,42], that
of communication via channels [42,44], and many other
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resource theories, where the yield (cost) of two resources
together may be strictly larger (smaller) than the sum of the
yields (costs) of the resources processed individually.
Based on the formulas for the distillable coherence and

the coherence cost, we are ready to characterize precisely
the (ir-)reversible states.
(Ir-)reversibility.—From the definitions of Cd and Cc,

it is immediate that CdðρÞ ≤ CcðρÞ. A state is reversible
if the equality holds, otherwise, it is irreversible. From
Theorem 4, we see that all pure states are asymptotically
reversible. In the mixed state case, Theorem 10 provides a
simple criterion to decide whether the given state is
reversible or not that completely characterizes all the
reversible states. From this, we conclude that the mixed
states are generically irreversible and the coherence theory
is an irreversible resource theory. However, in contrast to
the irreversibility in entanglement theory [6,7,45], there is
no “bound coherence” (as an analogue of “bound entan-
glement” [6,7]), from which no coherence could be dis-
tilled, but for which, in order to create it, nonzero coherence
would be required.
Theorem 10.—A mixed state is reversible if and only if

its eigenvectors are supported on the orthogonal subspaces
spanned by a partition of the incoherent basis. That is,
ρ ¼ ⨁

j
pjjϕjihϕjj, each jϕji ∈ Hj ¼ spanfjii∶i ∈ Sjg and

H ¼ ⨁
j
Hj.

Note that the criterion is easy to check, and contrast
this with the entanglement irreversibility of two-qubit
maximally correlated states in [46], where Wootters’
formula [47] for calculating the entanglement of formation
is used: Here, we do not need the explicit formula of the
coherence of formation, which involves an optimization
problem itself, and indeed, we do not know such a formula
in high dimension. However, the equality constraint is so
severe that we can learn the structure of the state.
Theorem 11.—There is no bound coherence: CdðρÞ ¼ 0

implies CcðρÞ ¼ 0. In other words, every state with any
coherence (nonzero off-diagonal part) is distillable.
Discussion.—We have shown that the incoherent

operations proposed by Baumgratz et al. [5] give rise to a
well-behaved operational resource theory of coherence.
Remarkably, almost all basic questions in this resource
theory have simple answers. We saw that it is a theory
without bound coherence, but exhibiting generic irrevers-
ibility for transformations between pure and mixed states.
This should be contrasted with the general abstract frame-
work of Brandão and Gour [48], which applies to the present
theory of coherence, but rather than the incoherent operations
considered here, requires all completely positive trace-
preserving maps E such that the weaker condition EðΔÞ ⊂
Δ holds. Both the distillable coherence and the coherence
cost under this relaxed premise becomeCrðρÞ, meaning that,
while we cannot distill more efficiently with this broader
class of operations, formation becomes cheaper.

One curious observation is that the resulting theory
of coherence resembles so closely the entanglement
theory of maximally correlated states (MCS). Indeed, under
the correspondence ρ ¼ P

ijρijjiihjj↔~ρ ¼ P
ijρijjiiihjjj,

CðψÞ is identified with Eð ~ψÞ, the entropy of entanglement,
CcðρÞ ¼ CfðρÞ with Ecð~ρÞ ¼ Efð~ρÞ, the entanglement cost
(which equals the entanglement of formation for MCS
[46]), and CdðρÞ ¼ CrðρÞ with Edð~ρÞ ¼ Erð~ρÞ, the distil-
lable entanglement (which equals the relative entropy of
entanglement for MCS [49]). Indeed, this answers all the
basic asymptotic questions in the theory, which is much
simpler than general entanglement theory. What is missing
to elevate this correspondence from an observation to a
theoretical explanation (cf. [29]) is a matching correspon-
dence between incoherent operations and LOCC operations
that would truly show that the two theories are equivalent.
A notable gap in the above correspondence is the non-
asymptotic theory of pure states: The diagonal entries of a
pure state correspond to the Schmidt coefficients of the
associated pure entangled state, and, by Nielsen’s theorem
[33], a pure state can be transformed by LOCC into another
one if and only if the Schmidt vectors are in majorization
relation. In the case of incoherent operations on pure states,
we only know that majorization is sufficient for trans-
formability but not whether it is necessary.
To study this correspondence further, it might be worth

investigating the optimal conversion rates R of incoherent

transformations ρ⊗n↦
IC

≈
1−ϵ

σ⊗nR for general mixed states,
and for which, for the moment, we can get bounds:
½CrðρÞ=CfðσÞ�≤R≤minf½CrðρÞ=CrðσÞ�; ½CfðρÞ=CfðσÞ�g.
Given the close resemblance to entanglement theory, we

may expect that one-shot coding theorems, as well as finite
block length analyses, can be carried out. As in one-shot
information theory [50], we expect that min- and max-
entropies and relative entropies and Rényi (relative) entro-
pies govern the optimal rates, which now would carry an
explicit dependence on the protocol error.
It remains to be seen whether similarly complete theories

of asymptotic operational transformations can be carried
out for other resource theories, such as that of reference
frames [12]. Observe that, as reference frame theories are
built on group actions under which the free states are
precisely the invariant ones, the present theory of coherence
may be viewed as the special case of the group of the
diagonal phase unitaries.
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