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We discuss the universal nature of relaxation in isolated many-body quantum systems subjected to global
and strong periodic driving. Our rigorous Floquet analysis shows that the energy of the system remains
almost constant up to an exponentially long time in frequency for arbitrary initial states and that an effective
Hamiltonian obtained by a truncation of the Floquet-Magnus expansion is a quasiconserved quantity in a
long time scale. These two general properties lead to an intriguing classification on the initial stage of
relaxation, one of which is similar to the prethermalization phenomenon in nearly integrable systems.
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Introduction.—In periodically driven many-body quan-
tum systems, excited states as well as the ground state
participate in the dynamics, and nontrivial macroscopic
phenomena can appear. Recent years havewitnessed remark-
able experimental developments, such as the discoveries of
the Higgs mode in the oscillating order parameter of the
superconducting material under a terahertz laser [1], and the
Floquet topological states in the periodically driven cold
atom [2–5]. Periodic driving in isolated quantum systems
sometimes generates unexpected dynamical phenomena,
even if the instantaneous Hamiltonian at each time step is
simple. To name only a few, dynamical localization [6–8],
coherent destruction of tunneling [7–9], dynamical freezing
[10,11], and dynamical phase transitions [12–14] are remark-
able far-from-equilibrium phenomena that cannot be cap-
tured within linear-response analysis.
On the other hand, as recently discussed in the context of

thermalization, careful consideration is necessary on the
true steady state in driven many-body systems [15–19].
Thermalization in isolated quantum systems has become
one of the critical subjects in modern physics [20–25]. The
first study was made by von Neumann early in 1929 [26],
and now we are on a new stage by incorporating many
concepts, including quantum entanglement [27] and experi-
ments [28]. In the case without driving fields, the notion of
the eigenstate thermalization hypothesis (ETH) is a key idea
[20,21,23,26] that states that each energy eigenstate is
indistinguishable from the microcanonical ensemble with
the same energy. As a generalization of ETH to periodically
driven systems, the Floquet ETHwas proposed,which states
that all of the Floquet eigenstates look the same and are
indistinguishable from the infinite-temperature (i.e., com-
pletely random) state [16,19,29–31]. This leads to the
conclusion that, in general, periodically driven many-body
systems will eventually reach the steady state of infinite
temperature, although several exceptions exist [15,17–19].

The question that follows is on the time scale to reach the
steady state. Recent experiments seem to urge us to clarify
the general aspects of the time scale especially for the
strong amplitude of global driving, where nontrivial
transient dynamics is anticipated. We note that most non-
trivial dynamical phenomena in driven systems are far-
from-equilibrium effects that cannot be analyzed within
linear-response analysis. Hence, in this Letter, we for the
first time aim to find the universal nature of the relaxation to
the steady state under strong and global driving. This
direction is clearly crucial for a deeper understanding of
thermalization and for analyzing the stability of transient
dynamics in experiments.
For this aim, we focus on the Floquet Hamiltonian HF,

which plays a central role in periodically driven systems:

e−iHFT ≡ T e−i
R

T

0
dtHðtÞ; ð1Þ

whereHðtÞ is the Hamiltonian of the system, T is the time-
ordering operator, and T is the period of the driving (ℏ ¼ 1
throughout this Letter). The Floquet Hamiltonian is an
effective Hamiltonian that contains full information on the
stroboscopic dynamics. The Floquet-Magnus (FM) expan-
sion is a formal expression for the Floquet Hamiltonian:
HF ¼ P∞

m¼0 T
mΩm [32,33]. The explicit form of Ωm is

given in Eq. (8) below. However, it has recently been
recognized that using a full series expansion is problematic
since it is not convergent in general. The convergence
radius shrinks as the system size increases [33]. Instead, we
here use the technique of truncation in the FM expansion,
which was recently developed for describing the Floquet
Hamiltonian for transient time scales [34,35]:

e−iH
ðnÞ
F T ≃ e−iHFT; where HðnÞ

F ¼
Xn
m¼0

TmΩm: ð2Þ
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Here, HðnÞ
F is the nth order truncated Floquet Hamiltonian.

There are several studies which show that the time
evolution by the truncated Floquet Hamiltonian is reliable
up to a certain long time τ for a driving with the high
frequency ω ¼ 2π=T [33], τ ∼ ω1=2 for the Friedrichs
model on the continuous space [34], and τ ∼ exp½OðωÞ�
for lattice systems when driving is local [35] or interactions
are short ranged [35–37]. In this Letter, we use the
truncation technique for high-frequency driving.
With this technique, two main findings are presented. We

show as the first result that in the case of a high-frequency
driving, the truncated Floquet Hamiltonian is a quasicon-
served quantity (a quantity that is almost conserved in a
long time scale). We also show as the second result that
energy-absorption rate per one site is bounded for an
arbitrary amplitude of driving and for arbitrary initial states:

_E=N ≲ ðNV=NÞ exp½−Oðω=gÞ�; ð3Þ

where E and N are the total energy and the number of
lattice sites, respectively, and g is the maximum energy per
one site. The driving field is applied to NV sites. This
provides a criterion on the stability of transient quantum
dynamics in experiments. These two findings lead to an
intriguing classification on the relaxation processes, one of
which is similar to the prethermalization phenomenon seen
in nondriven nearly integrable systems [38–41]; see
Refs. [42,43] for recent relevant numerical calculations.
Setup and numerical example.—We consider a quantum

spin system defined on a lattice with N sites in an arbitrary
dimension, whose Hamiltonian is written as

HðtÞ ¼ H0 þ VðtÞ: ð4Þ

The driving field VðtÞ is applied to NVð≤ NÞ sites and
satisfies the periodicity in time VðtÞ ¼ Vðtþ TÞ with zero
average over the single period. We mainly focus on the
regime of high frequency ω ¼ 2π=T. Each lattice site
i ¼ 1; 2;…; N has its own spin. The basic assumption
on the Hamiltonian is that it is expressed in the form of

HðtÞ ¼
X

X∶jXj≤k
hXðtÞ; ð5Þ

where X ¼ fi1; i2;…; ijXjg is a set of the lattice sites, with
jXj being the number of sites in X and hXðtÞ an operator
acting on the sites in X. In addition, we assume that the
single-site energy is bounded in the sense that,

for any site i;
X
X∶X∋i

∥hXðtÞ∥ ≤ g; ð6Þ

with some fixed positive constant g, where ∥ · ∥ denotes the
operator norm.

The form of Eq. (5) means that the Hamiltonian contains
at most k-body interactions. For most physical applications,
we can consider the case of k ¼ 2. In the case of spin-(1=2)
systems, the most general form of the Hamiltonian (5) with
k ¼ 2 is

HðtÞ ¼
XN
i¼1

BiðtÞ · σi þ
XN
i<j

X
α;γ¼x;y;z

Jαγij ðtÞσαi σγj; ð7Þ

where σi ¼ ðσxi ; σyi ; σzi Þ is the Pauli matrix of the ith spin,
BiðtÞ is the local magnetic field at the ith site, and Jαγij ðtÞ
denotes the interaction between the ith and jth spins. We
can explicitly confirm that this Hamiltonian can be brought
into the form of Eq. (5) by putting hfig ¼ Bi · σi and
hfi;jg ¼

P
α;γ¼x;y;zJ

αγ
ij σ

α
i σ

γ
j.

To make clear the physical phenomena that we address,
we show a numerical example with a toy model that has
been used to show the Floquet ETH in Ref. [31]. We
consider the dynamics over one cycle, taking HðtÞ ¼ Hz
for the first half period and HðtÞ ¼ Hx for the second half
period, where Hz ¼

P
N
i¼1 ½−Jσziσziþ1 þ Bzσ

z
i � with the

periodic boundary condition and Hx ¼ Bx
P

N
i¼1 σ

x
i . We

calculate the time evolution of the z component of the first
spin σz1 setting each spin-down state as the initial state.
Floquet ETH implies that a steady state in the longtime
limit is a random state, and hence, when it is satisfied, the
expectation value of any local spin operator eventually
reaches zero. In Fig. 1, the time evolution for a sufficiently
large system size is shown. Figs. 1(a), 1(b), and 1(c) are the
time evolution of σz1 in the large time scale, the initial stage,
and the transient time scale, respectively. Figure 1(a) shows
a vanishing expectation value that is a clear indication of

FIG. 1. Numerical demonstration of prethermalizationlike phe-
nomenon. (a) Relaxation in the long time scale. (b) Initial
relaxation. (c) Transient time evolution after the initial one.
Parameters are ðJ; Bx; BzÞ ¼ ð1; 0.9045; 0.8090Þ and N ¼ 24.
The dotted line in (b) is the expectation value in the equilibrium

state of Hð0Þ
F at the inverse temperature β ¼ 0.85, which is

determined from the expectation value of Hð0Þ
F at t ¼ 10.
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the Floquet EHT. Crucial observation is that after the initial
relaxation [Fig. 1(b)], the expectation value is almost
constant for finite transient time scales, and the time scales
depend on the period T [Fig. 1(c)]. This implies that the
heating process is seemingly suppressed during this time
scale. This is somewhat similar to the prethermalization
phenomenon in nondriven nearly integrable systems. In
experimental situations, this transient time behavior is
crucial, and hence we address the mechanism of the
behavior and consider the period dependence on the
time scale.
Time scale of the heating process.—We use the FM

expansion for analyzing the energy absorption and the
relaxation process. The FM expansion is the formal
expansion of the Floquet Hamiltonian given by
HF ¼ P∞

n¼0 T
nΩn, with Ω0 ¼ H0 and the nth order

coefficient Ωn for n ≥ 1 being given by [44]

Ωn ¼
X
σ

ð−1Þn−θ½σ�θ½σ�!ðn − θ½σ�Þ!
inðnþ 1Þ2n!Tnþ1

Z
T

0

dtnþ1…

×
Z

t2

0

dt1½Hðtσðnþ1ÞÞ; ½HðtσðnÞÞ;…;

½Hðtσð2ÞÞ; Hðtσð1ÞÞ�…��; ð8Þ
where σ is a permutation and θ½σ� ¼ P

n
i¼1 θ(σðiþ 1Þ −

σðiÞ) with θð·Þ is the step function. It is believed that the
FM expansion is divergent in many-body interacting
systems [19,29,33]. See the Supplemental Material for
the numerical demonstration of the divergence [45]. This
divergence is not merely a mathematical phenomenon but
is now thought to be an indication of a heating process due
to periodic driving [19,29,33].
We define the nth order truncation of the FM expansion

as in Eq. (2) and show that, for general spin systems, the
time scale of the heating is exponentially slow in frequency.
To this end, we start with an intuitive explanation on our
analysis. From Eq. (8), Ωn has, at most, ðnþ 1Þk-spin
effective interactions because of the multiple commutators
in Eq. (8), which describes the collective flip of ðnþ 1Þk
spins. Since the energy exchange between a quantum
system and the external periodic field is quantized into
integer multiples of ω and the energy of each spin is
bounded by g, N� ∼ ω=g spins must flip cooperatively in
order to absorb or emit the single “energy quantum.” Such a
process is taken into account only in the terms higher than
the n0th order in the FM expansion, with n0 ∼ N�=
k ∼ ω=ðgkÞ. Indeed, each term of the FM expansion is
rigorously bounded from above as

∥Ωn∥Tn ≤ 2gNV
ð2gkTÞnn!
ðnþ 1Þ2 : ð9Þ

This is given by estimating norms of the multiple commu-
tators taking into account that the Hamiltonian has, at most,
k-body interaction and the energy per site is bounded by g

[35,45]. Equation (9) shows that the FM expansion (2)
looks convergent up to n ≤ n0 ∼ ω=ðgkÞ and

∥HðnÞ
F −Hðn0Þ

F ∥ ¼ NVOðTnþ1Þ ðn < n0Þ; ð10Þ

but it grows rapidly for n > n0. Therefore, we can eliminate
the heating effect most efficiently by truncating the FM
expansion at n ¼ n0. The time scale of the heating is thus
evaluated by comparing the difference between the exact
time evolution and the approximate time evolution under
the n0th order truncated Floquet Hamiltonian. It is expected
that higher-order terms (i.e., simultaneous flip of a large
number of spins) would matter only in the later stage of the
time evolution.
We now make the above argument mathematically

rigorous. We can prove the following theorem.
Theorem.—The n0th order truncated Floquet

Hamiltonian Hðn0Þ
F is almost conserved up to an exponen-

tially long time in frequency in the sense that

∥Hðn0Þ
F ðtÞ −Hðn0Þ

F ∥ ≤ 16g2k2−n0NVt; ð11Þ

where t ¼ mT with a positive integer m, n0 ¼
⌊1=ð8gkTÞ − 1⌋, and Hðn0Þ

F ðtÞ ¼ U†ðtÞHðn0Þ
F UðtÞ is the

n0th order truncated Floquet Hamiltonian at time t in the

Heisenberg picture, with UðtÞ ¼ T e−i
R

t

0
dt0Hðt0Þ.

This is derived by evaluating the norm of the Dyson
expansion for the time-evolution operators on the left-hand
side, taking into account that the Hamiltonian is written as
Eq. (5) with Eq. (6). See the Supplemental Material for
more details on the derivation [45]. Combined with
Eq. (10), this theorem leads to

∥HðnÞ
F ðtÞ −HðnÞ

F ∥ ≤ 16g2k2−n0NVtþ NVOðTnþ1Þ ð12Þ

for any n < n0. In particular, by substituting n ¼ 0, we
obtain

1

N
∥H0ðtÞ −H0∥ ≤

NV

N
½16g2k2−n0tþOðTÞ�: ð13Þ

It is noted that the term OðTÞ in Eq. (13) is independent of
t. Thus, the energy density remains constant within a small
fluctuation of OðTÞ for an exponentially long time in
frequency. Equation (11) provides a lower bound on the

time scale during which Hðn0Þ
F can be an approximately

conserved quantity. This quasiconserving property lasts
during a time scale larger than τ ∼ 2n0 ∼ eOðωÞ. Similarly,
Eq. (13) implies that the lower bound of the time scale of
heating is an exponentially long time in frequency. This is a
main result (3). The exponentially long time scale of the
energy relaxation was shown for short-range interacting
spin systems in the linear-response regime in Ref. [46], but
it should be emphasized that Eq. (13) has been obtained
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without assuming short-range interactions and the linear-
response argument. See Ref. [47] for a recent numerical
result.
It is remarked that for a local driving with NV ≲ eOðωÞ, a

much stronger result was shown in Ref. [35], i.e.,

∥T e−i
R

t

0
HðsÞds − e−iH

ðn0Þ
F t∥ ≤ exp½−OðωÞ�t; ð14Þ

for t ¼ mT. This inequality implies that, for any bounded
operator that may be highly nonlocal, the FM truncated
Hamiltonian gives the accurate time evolution for an
exponentially long time. In the case of the global driving
NV ∝ N, this strong inequality (14) is not satisfied for
sufficiently large systems, but, even in this case, we can
utilize the finite order truncation of the FM expansion to
discuss the relaxation process, as is argued below.
Relaxation process.—Our rigorous result enables us to

discuss possible scenarios on the initial stage of relaxation.
According to the Floquet ETH [19,29–31], the steady state
in the longtime limit induced by the Floquet Hamiltonian
(1) is a state of infinite temperature. A full FM series
expansion, in general, diverges in large quantum systems
and hence it is not useful [33,35]. However, the truncated
Floquet HamiltonianHðn0Þ

F is a quasiconserved quantity and
plays a crucial role in the relaxation process.
We make a remark on the degree of nonlocality on the

quasiconserved quantity. The n0th order truncated Floquet
Hamiltonian has effective ðn0 þ 1Þk-body interactions, and
hence the nonlocality looks large. However, for a high-
frequency driving, higher-order contributions in the FM
expansion are very small since T is small. The dominant
contribution is in fact the original Hamiltonian H0. Hence,
nonlocality of the truncated Floquet Hamiltonian is not
very strong. Eigenstates for the truncated Floquet

Hamiltonian Hðn0Þ
F thus should satisfy the usual ETH,

not the Floquet ETH. In addition, we should note that

from Eq. (10), HðnÞ
F ≈Hðn0Þ

F for any n < n0. Hence, these
truncated Floquet Hamiltonians are not independent but are
almost the same. Practically, one can approximate the

quasiconserved quantity Hðn0Þ
F by H0ð¼ Hð0Þ

F Þ.
Taking account of those, we discuss a scenario on the

initial stage of relaxation. Since the quasiconserved quan-
tity exists with a long lifetime, the system relaxes to a
quasistationary state characterized by the quasiconserved
quantity, which will be close to a state corresponding
to the (micro-)canonical ensemble ρðn0Þeq of the effective

Hamiltonian Hðn0Þ
F set by the initial state. Approximately,

one can use ρð0Þeq (the equilibrium ensemble of H0) instead

of ρðn0Þeq because HðnÞ
F ≈Hðn0Þ

F for any n < n0.
The initial stage of relaxation can be classified into two

cases: i.e., (i) the case where the relaxation to the quasista-
tionary state is faster than the energy relaxation, and (ii) the
case where both relaxation times are comparable. In case

(i), the system first reaches the quasistationary state, then
relaxes to the true steady state. This is highly related to the
prethermalization phenomenon in the isolated nearly inte-
grable systems [40,41], where the system first relaxes to a
quasistationary state corresponding to the generalized
Gibbs ensemble and then relaxes to the true steady state.
This is what we numerically observed in Figs. 1(b) and
1(c). Remarkably, in Figs. 1(b) and 1(c), hσz1ðtÞi ≈ −0.65 in
the quasistationary state, which is close to Trρð0Þeq σ

z
1 [the

dotted line in Fig. 1(b)] at the inverse temperature β ¼ 0.85

that is determined from the expectation value of Hð0Þ
F at

t ¼ 10. This fact indicates that the quasistationary state is

actually described by ρð0Þeq in this model.
In case (ii), on the other hand, the relaxation process

towards the quasistationary state and that towards the true
steady state are indistinguishable, and hence stable qua-
sistationary behavior is not observed at the initial stage of
relaxation.
Because the time scale of energy relaxation becomes

longer exponentially as the frequency increases, we expect
to find case (i) for sufficiently high frequencies unless there
is some special reason such as conservation laws [15,17],
strong quenched disorder [18,19], diverging time scale due
to quantum criticality [48], and so on.
Our analysis deals with general spin models, which

makes clear why the heating is slow in a precise manner
and leads us to the universal scenario of relaxation
processes. However, in our evaluation, the single-site
energy is overestimated and the effect of quantum inter-
ference is underestimated. Hence, the divergence of the FM
expansion presumably begins at a higher order than our
estimation n0 ≈ 1=ð8gkTÞ. We stress that our estimation on
the time scale is a rigorous lower bound that can be
exponentially large in frequency, and hence the actual time
scale of the heating will be longer than our estimation [49].
In order to obtain a quantitatively accurate estimate for a
specific model, we will have to study the quantum
dynamics of the given model numerically.
Related to the above remark, we emphasize that our

result does not tell us about the true steady state. It should
be an infinite-temperature state if the Floquet ETH holds.
However, another possibility is not excluded: there might
be an energy-localized phase [16] with a vanishing energy-
absorption rate. It is an open problem to understand the
precise condition of the Floquet ETH.
Summary.—In summary, we have considered the quan-

tum dynamics of general driven spin systems that have at
most k-body interactions and a bounded single-site energy
g. We have rigorously shown the Theorem stating that the
truncated Floquet Hamiltonian is a quasiconserved quantity
and the rate of energy absorption is exponentially small in
frequency. This finding enables us to classify the initial
stage of relaxation. It is emphasized that we need not
assume short-range interactions in the Hamiltonian (7). For
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instance, Jα;γij ¼ δα;γJ=N, which corresponds to the
Heisenberg all-to-all couplings, satisfies the condition of
Eq. (6) with a fixed value of g even in the thermodynamic
limit. Therefore, the result in this Letter is applicable to
most physically relevant spin models. However, as seen in
Eq. (6), our argument excludes bosonic systems. We expect
that our analysis will help to understand even bosonic
systems.
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by the JSPS Core-to-Core Program “Non-equilibrium
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Note added.—Recently, closely related results obtained
with a different approach have appeared [36,37].
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