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Renormalization-group theory has stood, for over 40 years, as one of the pillars of modern physics. As
such, there should be no remaining doubt regarding its validity. However, finite-size scaling, which derives
from it, has long been poorly understood above the upper critical dimension dc in models with free
boundary conditions. In addition to its fundamental significance for scaling theories, the issue is important
at a practical level because finite-size, statistical-physics systems with free boundaries and above dc are
experimentally relevant for long-range interactions. Here, we address the roles played by Fourier modes for
such systems and show that the current phenomenological picture is not supported for all thermodynamic
observables with either free or periodic boundaries. In particular, the expectation that dangerous irrelevant
variables cause Gaussian-fixed-point scaling indices to be replaced by Landau mean-field exponents for all
Fourier modes is incorrect. Instead, the Gaussian-fixed-point exponents have a direct physical manifes-
tation for some modes above the upper critical dimension.
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In this Letter we address a subtle question, still open, in
the theory of finite-size scaling (FSS). Although it may
cursorily appear to be an academic exercise, this question
has to be decisively and convincingly resolved since it
concerns the very foundations of the renormalization group
(RG), one of the greatest achievements of theoretical
physics [1]. Given the nature of our investigation, and
with the aim of a comprehensive presentation, we empha-
size essential historical and relatively technical elements of
the theory before introducing the problem of Fourier modes
in the treatment of boundary conditions.
FSS is a well developed component of modern theories of

critical phenomena. It was initially introduced on heuristic
grounds [2] and thenunderstoodwithin the frameofWilson’s
RG [1,3–5]. The system’s inverse typical linear scale L−1

appears like the reduced temperature t ¼ ðT − TcÞ=Tc or
the magnetic field h ¼ H=Tc as a scaling field governing
flow towards the RG fixed points (FPs) which control the
critical singularities of thermodynamic properties,

CðtÞ ∼ jtj−α; mðtÞ ∼
t<0

jtjβ; mðhÞ ∼ jhj1=δ; ð1Þ

χðtÞ ∼ jtj−γ; ξðtÞ ∼ jtj−ν; gðxÞ ∼ jxj−ðd−2þηÞ: ð2Þ
Here, C,m, χ, ξ, and g are, respectively, the singular parts of
the specific heat, magnetization, susceptibility, correlation
length, and correlation function, and the fields t or h, when
not specified, are zero. The long-distance properties at the
FPs depend on space dimension d and order-parameter
symmetry, but not on details such as the short range of
microscopic interactions, or lattice symmetry. Hence, there
exists a set of properties (the critical exponents as well as

combinations of critical amplitudes not considered here)
which rigorously take the same values for different systems.
Magnetic systems, for example, can share these properties
with fluids. This is the meaning of the term “universality”
used in this context [6].
The usual phenomenological argument for FSS (which

turns out to be valid only below the upper critical dimension)
can be summarized as follows [2,5]. Consider a quantity
Pðt; L−1Þ that, for L → ∞, exhibits a singularity in the
vicinity of the critical point Tc, measured by a critical
exponent ρ, so that Pðt; 0Þ ∼ jtjρ. Then, this singularity
develops in a finite-size system as

Pðt; L−1Þ ∼ Pðt; 0ÞP½L=ξðtÞ�; ð3Þ
where, it is argued, the ratio L=ξðtÞ appears because it invo-
lves the only two length scales governing long-distance beha-
vior, and the scaling functionP exhibits a power-lawbehavior
PðzÞ ∼ z−ρ=ν, such that the singularity in t is washed out at Tc
for the finite system. This argument predicts FSS exponents
γ=ν for the susceptibility, and −β=ν for the magnetization.
A spectacular result of Wilson’s RG is the explanation

for the existence of an upper critical dimension dc above
which Landau mean-field theory (MFT) is recovered, with

α ¼ 0; β ¼ 1=2; δ ¼ 3; ð4Þ
γ ¼ 1; ν ¼ 1=2; η ¼ 0 ð5Þ

for ϕ4-field theory. To fix ideas, let us consider a nearest-
neighbor Ising model consisting of spins sx located on the
sites x of a regular hypercubic lattice with unit vectors μ
(jμj ¼ a, the lattice spacing). The exact partition function
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Z ¼
X

fsxg
e
β

�
J
P

x

P
μ
sxsxþμþH

P
x
sx

�

ð6Þ

can be rewritten via a Hubbard-Stratonovich trans-
formation as a functional integral over ϕðxÞ ∈ R,
Z≃Q

x

R
dϕðxÞe−S½ϕ�, with

S½ϕ� ¼
Z

ddx

�
f0 þ

r0
2
ϕ2 þ u

4
ϕ4 þ c

2
j∇ϕj2 − hϕ

�
; ð7Þ

where f0 ¼ −a−d ln 2, r0 ¼ a−2t, u ¼ 2ad−4, c ¼ ð2dÞ−1,
and h ¼ βa−ðd=2þ1ÞH. Dimensional analysis shows that the
free energy f0 has scaling dimension d, the coefficient r0,
proportional to the reduced temperature, has dimension
yt ¼ 2, the coefficient of the quartic term u has yu ¼ 4 − d,
and the magnetic field has yh ¼ d=2þ 1. The eigenvalues
yi > 0 control the flow of the relevant fields at the FP,
leading to homogeneity:

fðt; hÞ ¼ b−dFðbytt; byhhÞ; ð8Þ

ξðt; hÞ ¼ bΞðbytt; byhhÞ; ð9Þ

gðt; h;xÞ ¼ b−dþ2Gðbyt t; byhh; b−1xÞ: ð10Þ

The critical exponents in Eqs. (1) and (2) emerge through
the scaling laws,

α¼ð2yt−dÞ=yt; β¼ðd−yhÞ=yt; δ¼ yh=ðd−yhÞ;
ð11Þ

γ¼ð2yh−dÞ=yt; ν¼ 1=yt; η¼ d−2yhþ2: ð12Þ

Above dc ¼ 4, yu < 0, and one expects that critical
behavior should be controlled by the Gaussian FP
ðt; h; uÞ ¼ ð0; 0; 0Þ and characterized by these exponents.
However, a discrepancy between the MFT exponents in
Eqs. (4) and (11) indicates that the limit u → 0 has to be
taken with care; u is a dangerous irrelevant variable (DIV)
[7], at least, as was first thought, in the free-energy sector,
the agreement between Eqs. (5) and (12) suggesting that
there is no danger in the sector of the correlations [8]. A
proper inclusion of this mechanism resolves the discrep-
ancy in the free-energy sector. In Fourier space, for a
periodic system, the quadratic part of the action (7) reads
1
2

P
kðjkj2þ r0Þjϕkj2, and the quartic term 1

4
u
R
ddxϕ4ðxÞ¼

ðu=4LdÞPk1k2k3
ϕk1

ϕk2
ϕk3

ϕ−k1−k2−k3
can be expanded as

1
4
ðu=LdÞϕ4

0 þ 3
2
ðu=LdÞϕ2

0

P
kjϕkj2 up to higher-order cor-

rections in the nonzero modes, such that the action can be
approximated by

S½ϕ�≃ 1

2

�
r0 þ

3u
2Ld

X

k≠0
jϕkj2

�
ϕ2
0 þ

u
4Ld ϕ

4
0

þ 1

2

X

k≠0
ðr0 þ cjkj2Þjϕkj2 − hLd=2ϕ0: ð13Þ

Despite its irrelevance, u is dangerous [7] for the zero modes
above dc. The nonzero modes do not have this feature.
The zero mode is thus responsible for anomalous FSS

behavior above dc and leads to

fðt; u; h; L−1Þ ¼ b−dF

�
byt t − byuu

byu=2u1=2
;

byhh

byu=4u1=4
;
b
L

�
: ð14Þ

The temperature field t is governed by a modified RG
exponent y�t ¼ yt − yu=2 ¼ d=2, and the magnetic field h
by y�h ¼ yh − yu=4 ¼ 3d=4 [9–11]. Temperature depend-
encies of the magnetization and susceptibility follow by
differentiating (14) with respect to h and choosing the scale
factor b ¼ ðt=u1=2Þ−2=d. Hence,

mðt; u; 0Þ ¼ BðuÞt1=2M½1 − AðuÞt1−4=d�; ð15Þ

χðt; u; 0Þ ¼ ΓðuÞt−1X½1 − AðuÞt1−4=d�; ð16Þ

and we now obtain the correct MFT exponents above dc.
[We omit here the specific heat and critical isotherm for
which the same argument holds; Eqs. (11) and (12) deliver
all mean-field exponents with y�t and y�h in place of the
original scaling dimensions]. The finite-size behavior is
immediate by setting b ¼ L in Eq. (14) and differentiating
appropriately [12], e.g.,

mTc
ðu; L−1Þ ∼ L−d=4MðAL2−d=2u1=2Þ; ð17Þ

χTc
ðu; L−1Þ ∼ Ld=2XðAL2−d=2u1=2Þ: ð18Þ

If the finite-size correlation length were bounded by the
system length [12], one could not write the combination
Ly�t t, which enters the free energy, as a ratio L=ξ along the
lines of Eq. (3). Within this framework, another length scale
lðtÞ was introduced, dubbed the thermodynamic length,
with lðtÞ ∼ t−2=d, with FSS being governed by the ratio
L=lðtÞ instead [13].
Contrary to previously widespread opinion [8,12–17],

the correlation sector also needs reexamination and the
homogeneity assumption above dc there takes the form [18]

ξðt; uÞ ¼ bϙΞ

�
bd=2

t

u1=2
− Ab2−d=2u1=2

�
; ð19Þ

gðt;u;xÞ¼ b−d=2G

�
bd=2

t

u1=2
−Ab2−d=2u1=2;b−1x

�
; ð20Þ

where we omit the h dependence for clarity. Here, the
exponent ϙ (“koppa”) extends the DIV mechanism to the
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correlation length [19]. This leads to a new interpretation,
dubbedQFSS inRef. [19], aboved ¼ dc dimensions. [TheQ
refers to ϙ, which governs the FSS of the correlation length
in Eq. (19)]. The finite-size behavior is transparent from
Eqs. (19) and (20); fixing the scale factor b ¼ L, we get

ξTc
ðu; L−1Þ ∼ LϙΞðAL2−d=2u1=2Þ; ð21Þ

gTc
ðu;x; L−1Þ ∼ L−d=2GðAL2−d=2u1=2Þ: ð22Þ

Above the upper critical dimension, ϙ ¼ d=dc and the notion
of thermodynamic length is abandoned in the QFSS picture
[18–21]. Below dc, ϙ ¼ 1 and ordinary FSS is recovered.
This picture is corroborated by analytical and numerical

calculations for systems with periodic boundary conditions
(PBCs), both in the short-range Ising model (SRIM)
above dc ¼ 4 and in the long-range Ising model (LRIM)
above dc ¼ 2σ [18–21]. In the latter case, the general
discussion has to be modified. The sum over interactions
in Eq. (6) is extended to all pairs with decaying coup-
lings Jx−x0 ∼ J=jx − x0jdþσ. The MFT critical exponents of
Eqs. (4) and (5) remain valid, except that ν ¼ 1=σ and
η ¼ 2 − σ, and the RG eigenvalues at the Gaussian FP take
the form yt ¼ σ, yh ¼ ðdþ σÞ=2, and yu ¼ 2σ − d [22].
One recovers the SRIM values with σ ¼ 2. The standard
scaling laws (12) are satisfied above dc, while those of (11)
are not, indicating again the dangerous irrelevancy of the
quartic term in the action, which now contains an additional
jkjσ contribution. The modified (starred) RG dimensions
are the same as before. The agreement between numerical
results for PBCs and the scaling picture of Eqs. (17), (18),
(21), and (22) is complete when simulations are performed
at Tc, but also when they are performed at the
pseudocritical point TL (defined by the size-dependent
temperature where a quantity such as the susceptibility
exhibits a maximum).
When free boundary conditions (FBCs) are imposed, an

intriguing feature appears. Simulation results are consistent
with the above picture at the pseudocritical point TL of the
FBC system [19], but not at Tc, where, instead, standard
FSS with the Landau MFT-type exponents of Eq. (5) has
been obtained for the susceptibility [23–27].
As recently shown by Wittman and Young [24] (see also

Refs. [10,11,23]), the Fourier modes play a key role.
The nonzero modes, which are not affected by DIVs,
contribute to the FSS of the susceptibility with the Landau
ratio γ=ν ¼ 2 for PBCs at both Tc and TL, and they argued
for the same Landau behavior of analogous modes for
FBCs at TL. We show below that standard FSS with
Landau exponents is not correct for all thermodynamic
functions; it is in conflict with the RG.
We follow Ref. [23] and perform a sine expansion

of the scalar field in Eq. (7) satisfying ϕðxÞ ¼ 0 at the
free surfaces: ϕðxÞ ¼ P

kϕk
Q

d
α¼1

ffiffiffiffiffiffiffiffi
2=L

p
sin kαxα, where

kα ¼ nαπ=L, nα ¼ 1; 2;…; L. In k space, the action takes a

form slightly different than that for PBCs, and one must
distinguish modes for which all nα values are odd integers.
These are analogous to the zero mode in the PBC case,
and we denote their set by Q. We denote the remaining
modes by G. The action now reads [23]

S½ϕ� ¼ 1

2

X

k

ðr0 þ cjkj2Þϕ2
k −

�
8

L

�
d=2

h
X

k∈Q
ϕk

Yd

j¼1

1

kj

þ u
Ld

X

k1;k2;k3;k4

Δk1;k2;k3;k4
ϕk1

ϕk2
ϕk3

ϕk4
; ð23Þ

where theΔi’s aremomentum-conserving factors. The diffe-
rence between the quadratic terms of Eqs. (13) and (23) is the
source for the difference in scaling between the pseudocrit-
ical shifts in the PBC andFBC cases [23]. The quartic term in
Eq. (23) is dangerous only for the modes k ∈ Q, which
couple to h.We henceforth refer tomodes for which u is dan-
gerous (in particular, the zero mode at Tc and TL for PBCs
andmodes with all odd nα’s at TL for FBCs) asQmodes and
the remaining ones as Gaussian modes or G modes.
We introduce the notation mk to represent the contri-

bution of a single mode k to the average magnetization.
Thus, mk ¼ hϕki ¼ hR ddxϕðxÞψkðxÞi, where ψkðxÞ
is the standing wave or the sine mode, depending
upon the BCs. The brackets indicate the thermal average
with the Boltzmann weight corresponding to the action
(13) or (23). The equilibrium magnetization is then
m ¼ hR ddx

P
kϕkψkðxÞi. The Q modes acquire nonvan-

ishing expectation values and have projections onto the
equilibrium magnetization m [23,24]. The G modes do not
have such projections and were expected, in the customary
picture, to exhibit standard FSS given byEq. (3)with Landau
exponents (5). This was supported by numerical evidence
for the susceptibility Fourier modes χk∈Q in Ref. [24].
This standard picture for G modes is incorrect, as we

shall now see. Either we study physical quantities which
are related to theQ modes, in which case the DIV has to be
properly taken into account, or we analyze properties
associated with G modes for which u is not dangerous.
In the latter case the exponents are those predicted by the
RG at the Gaussian FP; these are (11) and (12), and not
Landau exponents (4) and (5). In the first case, on the other
hand, the exponents are indeed MFT exponents (4) and (5),
but the correlation length has the FSS behavior involving ϙ,
and Eq. (3) has to be modified to QFSS, which, e.g., for
magnetization and susceptibility in the appropriate scaling
regime, reads as

mðt; L−1Þ ∼ jtjβ½Lϙ=ξðtÞ�−β=ν ∼ L−ϙβ=ν ∼ L−d=4; ð24Þ

χðt; L−1Þ ∼ jtj−γ½Lϙ=ξðtÞ�γ=ν ∼ Lϙγ=ν ∼ Ld=2: ð25Þ
The Q modes mk∈Q and χk∈Q themselves also obey QFSS.
For G modes this reduces to standard FSS:
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mk∈Gðt;L−1Þ∼ jtjðd−yhÞ=yt ½L=ξðtÞ�−ðd−yhÞ∼L−ðd−σÞ=2; ð26Þ

χk∈Gðt; L−1Þ ∼ jtj−ð2yh−dÞ=yt ½L=ξðtÞ�2yh−d ∼ Lσ: ð27Þ
Equation (27) agrees numerically with the result of

Wittmann and Young [24] because the combination of
exponents 2yh − d equals σ and coincides with γ=ν (for
the SRIM, σ ¼ 2). However, there is no way to reconcile
Eq. (26) with the power −β=ν ¼ −σ=2 (¼ − 1 for the
SRIM) for an arbitrary value of d above dc ¼ 2σ.
In order to determine which of the forms (i) Eq. (24)

from QFSS, (ii) Eq. (26) from the Gaussian FP, or even
(iii) m ∼ L−β=ν from the Landau exponents in Eq. (3)
correctly describes the scaling of the magnetization at
Tc, we performed Monte Carlo simulations for the SRIM
and the LRIM above dc, along the lines described in
Ref. [21]. Since we are simulating with finite-size lattices,
we examine the magnitudes of the Fourier-mode contribu-
tions through mkðL−1Þ ¼ hjskji ¼ hjPxsxψkðxÞji, where
sx is an Ising spin at site x ¼ an. The total magnetization is
mðL−1Þ ¼ hjPxsxji.

The various sectors examined and outcomes supported
are summarized in Table I. For the DIV sectors, Eq. (24)
gives mðL−1Þ ∼ L−d=4. For PBCs at Tc, this is already well
established, having also been verified numerically in
Ref. [28]. We find the same behavior for Q modes for
PBCs and FBCs at TL for both the five-dimensional (5D)
SRIM and the one-dimensional (1D) LRIM. For the non-
DIV sectors, standard FSS with Landau exponents predicts
mðL−1Þ ∼ L−σ=2, while we predictmðL−1Þ ∼ L−ðd−σÞ=2 after
Eq. (26). For the 5D SRIM, then, a plot on a double
logarithmic scale should have slope −1 according to
“Landau FSS,” or −3=2 according to Eq. (26). Our results
for G modes in Fig. 1 are clearly compatible with the latter
and rule out the former. For the LRIM above dc, the
outcome is even more stark; Landau FSS predicts a slope of
−σ=2 ¼ −0.05, independent of d, and Eq. (26) predicts
−ðd − σÞ=2 ¼ −0.45, for d ¼ 1, the latter being clearly
favored by the data in Fig. 2.
The results also confirm that the above-mentioned

feature associated with FBCs extends to other Q-mode
quantities; while they follow Eqs. (24) and (25) at TL, they
do not at Tc [23–27]. However, the results furthermore
show that they also obey scaling given by Eqs. (26)

TABLE I. The partitioning of Fourier modes into dangerous (Q) and nondangerous (G) sectors of the model and
FSS forms supported by Figs. 1 and 2. The Landau FSS form m ∼ L−β=ν ¼ L−σ=2 is not supported in the figures.

PBC FBC

k ¼ ð2π=LÞðn1;…; ndÞ k ¼ ½π=ðLþ 1Þ�ðn1;…; ndÞ
Q (DIV): G (non-DIV): Q (DIV): G (non-DIV):
all nα ¼ 0 any nα ≠ 0 all nα odd any nα even

FSS m ∼ L−d=4 m ∼ L−ðd−σÞ=2 m ∼ L−d=4 m ∼ L−ðd−σÞ=2
at TL χ ∼ Ld=2 χ ∼ Lσ χ ∼ Ld=2 χ ∼ Lσ

FSS m ∼ L−d=4 m ∼ Lðd−σÞ=2 m ∼ L−ðd−σÞ=2 m ∼ L−ðd−σÞ=2
at Tc χ ∼ Ld=2 χ ∼ Lσ χ ∼ Lσ χ ∼ Lσ

10
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2

L
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–4
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–2

m
k(t

,L
–1

)

FBC G-mode at  T
c

FBC G-mode at  T
L

PBC G-mode at  T
c

PBC G-mode at T
L

FBC m at  T
c

FBC m at  T
L

5D L
–1

L
–(d–2)/2

L
–d/4

FIG. 1. FSS for the 5D SRIM. The magnetization for FBCs
belongs to the DIV sector and scales as mðTLÞ ∼ L−d=4 (filled
diamonds). At Tc the magnetization scales as L−ðd−2Þ=2, as
predicted by Gaussian-FP FSS (filled triangles). The remaining
data are for the lowest critical and pseudocritical G modes
mkðL−1Þ, each of which belongs to the non-DIV sector. Here,
we see they also follow Gaussian-FP FSS and not the Landau FSS
prediction L−1 (which is indicated by the dotted lines).

102 104 106

L
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–2
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m
k(t

,L
–1

)

FBC G-mode at T
c

FBC G-mode at  T
L

PBC G-mode at  T
c

PBC G-mode at  T
L

FBC m at  T
c

FBC m at  T
L

L
–σ/2

L
–(d–σ)/2

1D, σ = 0.1

L
–d/4

FIG. 2. FSS for the 1D LRIM with σ ¼ 0.1. As in Fig. 1, the
magnetization for FBCs exhibits QFSS at TL, scaling asmðTLÞ ∼
L−d=4 (filled diamonds), and Gaussian-FP FSS at Tc, scaling as
L−ðd−σÞ=2 (filled triangles). The lowest critical and pseudocritical
G modes all also follow Gaussian-FP FSS and not the Landau
FSS prediction L−σ=2 (which is indicated by the dotted line).
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and (27) like G quantities, rather than standard FSS with
Landau exponents.
In summary, above the upper critical dimension, the

numerical evidence clearly rules out Landau FSS for G
modes and supports a direct physical manifestation of
Gaussian-FP exponents there, unaffected by DIVs. Q
modes for FBCs also exhibit G-like scaling at Tc rather
than Landau FSS.
In the literature, it has been stated that “due to the lack of

a better way of treating the zero-momentum modes,” it is
usual to “neglect them completely” [29]. Standard phe-
nomenological FSS associated with the excited modes was
then expected to deliver Landau FSS. The results estab-
lished here indicate that this approach is not correct. Also
in the literature, the critical exponents (11) and (12) are
presented as nonphysical; they were hitherto merely a
step on the way to reconciling RG theory with Landau
mean-field exponents above dc. Here, we have shown
that they are, in fact, physically manifest in the magnitudes
of the G modes. This is not a feature of finite size only.
In the thermodynamic limit, G modes should, for example,
acquire the temperature behavior mk∈GðtÞ ∼ jtjd=2σ−1=2.
Moreover, mean-field theory fails to fully describe either
G or Q modes above the upper critical dimension. Instead,
this careful approach to RG, taking QFSS into account,
delivers a consistent description for all Fourier modes.
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