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Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense
plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an
effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous
ionization and the screening length can be defined and used for a Yukawa system, which reproduces the
long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is
consistent with the screened model at vanishing wave number but merges with the OCP at high wave
number. Additionally, the EOCP reproduces the overall relaxation time scales of the correlation functions
associated with ionic motion. In the hot dense regime, this unified concept of EOCP can be fruitfully
applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in
x-ray Thomson scattering experiments.
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Matter in the Universe is very often found in extreme
states, at high pressure (> 1 Mbar) and high temperature
(> 1 eV). Such conditions, relevant to planetary interiors
[1], dwarf stars, and neutron star crusts [2], can now be
reproduced in experiments using high-energy [3] and x-ray
free-electron lasers [4] and are routinely met in inertial
confinement fusion studies [5]. This hot dense plasmas
(HDP) regime extends to high temperatures (≃keV) the
warm dense matter concept [6], more focused on the
transition between normal matter and plasmas. In both
thewarm densematter andHDP regimes, atoms are partially
ionized, electrons partially degenerate, and the Coulomb
coupling is strong, leading to a liquidlike structure. There is
no small parameter enabling a theoretical treatment in
perturbation, and the physical description is usually pro-
vided by very demanding state-of-the-art quantum ab initio
simulations. The theoretical description of the HDP is a
formidable challenge, since these methods reach their limits
of applicability. Fortunately, the orbital-freemethodwithin a
Thomas-Fermi formulation [7] extends to high temperatures
the capability of quantum simulations. It is also desirable to
rely on simple models in the first design and interpretation
of experiments to set up large scale simulations. Such
models have to be benchmarked against representative
HDP simulations. Here, we propose a unified concept of
an effective one component plasma that fully describes the
complicated nature of a strongly correlated plasma without
any free parameters. This model offers insights of funda-
mental focus in plasma physics and is relevant to research
areas like astrophysics and fusion science.
The one component plasma (OCP) [8,9] is a popular

model that consists of a single species of ions immersed in a

neutralizing background of electrons. Its static and dynami-
cal properties depend on only one dimensionless parameter,
the Coulomb coupling parameter Γ ¼ Q2e2=akBT, where a
is the Wigner-Seitz radius a ¼ ð3=4πnÞ1=3, n is the ionic
density, Q is the ionization, e is the fundamental charge,
and T is the temperature. Since the OCP model provides a
formulation in which all of its properties are either
analytical or tabulated, it is used as a practical representa-
tion of Coulomb coupling in many situations encountered
in hot dense plasmas although it represents a limiting
situation in which the electrons are fully degenerate.
Attempts to go beyond this simple model belong to the
family of screened systems in which the bare coulomb
interaction is replaced by a Yukawa potential [10], for
instance. In the Yukawa model, a screening length is
obtained within linear response theory in the small wave
number k (long distance) limit for given values of ioniza-
tion, temperature, and density [11]. In practice, the Yukawa
model is deeply modified in the interpretation of x-ray
Thomson scattering experiments by the introduction of
short-range hard-core corrections that extend further than
the first neighbors range [12,13]. All of these simplifying
assumptions can obscure the diagnostic of the phenomena
at play as is revealed by more realistic models [14–16] and
recent experiments [17].
These approaches are not satisfactory for actual plasmas

because ionization is not a well-defined quantity and the
screening length definition is somewhat arbitrary. To
provide a more realistic modeling of hot and dense plasmas,
we have developed a simple finite temperature Thomas-
Fermi orbital-free formulation coupled with molecular
dynamics (OFMD) [7]. With the same inputs as the
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quantum molecular dynamics simulations with orbitals,
i.e., atomic number, density, and temperature, the OFMD
simulations extend the range of accessible thermodynamic
states without limits on temperature [7,18–22]. A particu-
larly interesting feature is the possibility to perform
direct simulations of mixtures [23–29] to check the validity
of mixing rules for thermodynamical [24] and transport
properties [30].
In this Letter, we examine the relationship between the

OFMD simulations of plasmas and the simple OCP or
Yukawa formulations. We present a unifying concept
combining the merits of both formulations. We give argu-
ments supporting the use of the OCP model for the
properties involving short-range correlations, including
the equation of state [31] and the transport coefficients.
We show that the quantities related to long-range correla-
tions, forming the collective modes, such as the compress-
ibility and the sound speed, are better reproduced by the
Yukawa model once the ionization has been consistently
defined. We have investigated two cases of very different
atomic numbers relevant to the HDP regime: tungsten twice
compressed between 100 and 5000 eV, and germanium at
normal density between 100 and 800 eV. We used OFMD
simulations in the simplest Thomas-Fermi formalism.
Relying on the well-known Thomas-Fermi scaling laws
[31], we anticipate that our conclusions apply equally to
any element in the HDP regime.
An interesting feature, evidenced in Ref. [19], is that the

structure of the plasma, revealed by the pair distribution
function (PDF) generated from OFMD simulations, can
be precisely fitted by the OCP (see also Ref. [32]). This
procedure defines the effective OCP (EOCP) with the
effective coupling parameter Γe ¼ Q2

ee2=akBT and ioniza-
tion Qe. A similar procedure has been also invoked by Ott
et al. [33] to characterize the coupling for Yukawa systems,
which gives results very close to an adjustment by hand.
Ott’s method provides a quantitative basis to the effective
OCP concept [34]. We show in Fig. 1(a) such an adjustment
extracted from a series of simulations on tungsten at
40 g=cm3 and between 100 and 5000 eV. We chose a
temperature of 400 eV, which is just in the region of the Γ
plateau where the structure is independent of temperature
[31,37]. This peculiar evolution is due to the increase of
ionization that compensates for the increase of temperature.
It is worth noting that the structure is exactly the same with
exchange Thomas-Fermi-Dirac and gradient-corrected
functionals [38], leading to the same effective coupling.
Values of plasma parameters deduced from the EOCP
analysis are given in Table I for tungsten at 40 g=cm3

between 100 and 5000 eV, and germanium at 5.3 g=cm3

between 100 and 800 eV. The details of the OFMD
simulations and various formulas can be found in the
Supplemental Material [34].
We see in Fig. 1(a) for tungsten at 400 eV that the EOCP

PDF at Γe ¼ 19 perfectly matches the PDF obtained from

the OFMD. From the value of the coupling parameter Γe,
we can deduce an effective ionization Qe ¼ 25.4, which
appears to be 10% lower than an estimate within the
average atom framework using the same Thomas-Fermi
functional QTF (see Table I). This suggests that the piling
up of electrons around each ion is different in the OFMD
and average atom approaches, leading to different ioniza-
tion and screening at a short distance [39]. In any case, both
approaches here account for the nonlinear contributions to
screening close to the ions, contrary to the Yukawa model
where screening is always considered within linear
response. Within the EOCP model, the nonlinear screening
at a short distance is embodied in the effective charge Qe.
The good agreement between the EOCP and the OFMD
results at a short distance deteriorates at a long distance
(small q ¼ ka) as revealed by the calculation of the static
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FIG. 1. (a) The OFMD pair distribution function for tungsten at
40 g=cm3 and 400 eV (black points) compared with the OCP
result (red solid line) at Γ ¼ 19. (b) Corresponding static structure
factor. The blue line is the low q expansion of the Yukawa
structure factor using the effective ionization of the OCP fit. The
thin red line is the OCP low-q expansion. Note the logarithmic
scale to emphasize the differences at low wave number q.

TABLE I. Ionizations and plasma parameters for a tungsten
plasma at 40 g=cm3 and a germanium plasma at 5.3 g=cm3.
θ ¼ kBT=EF, where EF is the Fermi energy. κ is the inverse
screening length at a finite temperature in units of the Wigner-
Seitz radius a. Plasma periods Tωp

¼ 2π=ωp are given in atomic
units.

Elt T Γe Qe QTF θ κ Tωp

eV a.u.

W 100 19 12.7 14.2 1.9 2.1 580
200 19 18.0 19.5 3.0 1.8 409
400 19 25.4 27.9 4.7 1.5 290
800 19 35.9 39.4 7.5 1.3 205
1200 17 41.6 46.9 10. 1.1 177
5000 10 65.1 67.3 31. 0.7 113

Ge 100 8 10.0 10.7 4.7 1.6 822
200 8 14.1 15.4 7.5 1.3 583
400 8 20.0 20.9 12. 1.1 411
800 7 26.4 26.0 20. 0.9 312
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structure factor SðqÞ shown in Fig. 1(b). At vanishing q,
SOCPðqÞ goes to zero as q2=3Γ [40] due to the long range
of the Coulomb potential, whereas SOFMDðqÞ goes to a
finite value proportional to the isothermal compressibility.
Actually, screening effects must be introduced at a long
distance. Assuming a Yukawa pair potential with an inverse
finite temperature screening length κ ¼ kFTa [11,41,42],
the resulting SYðqÞ tends to a finite value as ðq2 þ κ2Þ=
ðq2 þ κ2 þ 3ΓÞ at vanishing q. Using the effective charge
Qe as a definition of the ionization to compute the
screening constant κ, the low q expansion of SYðqÞ
connects seamlessly with the OFMD results. For tungsten
at 400 eV, the low q expansion of SYðqÞ is given as a blue
line in Fig. 1(b). An extensive comparison with the OFMD
results will be presented in a forthcoming paper. This
connection between the OCP and Yukawa models through
the definition of an effective charge is absent in traditional
modeling where the ionization used to compute the screen-
ing length is left as a free parameter. The ionization is often
assumed to be complete or deduced from an average atom
calculation. Here, we extract the effective charge from the
static structure of the PDF. It can also be parametrized from
a limited set of simulations using the Thomas-Fermi scaling
laws. We left the presentation of this parametrization to a
future paper.
A straightforward application of the EOCP concept

concerns the equation of state. Very often, the ion thermal
part is difficult to evaluate and is simplified or taken as an
interpolation between the solid and the perfect gas. In the
OFMD simulations this contribution is explicitly com-
puted. In the EOCP approach the ion thermal contribution
is constructed from analytical OCP fits [43] taken at Γe and
the electron contribution from the corresponding finite
temperature Fermi gas, as fitted by Nikiforov et al. [44], at
the electronic density corresponding to Qe. We show in
Table II for the case of germanium that the sum of these
two contributions Peff agree to better than 10% with the
SESAME equations of state [31,45] or the present direct
simulations with the OFMD.
We turn now to the dynamical properties. It is well

known that the long-wavelength excitations of the charged
versus neutral systems are notably different. Baus [46]

described these differences using a kinetic theory of the
fluctuation spectra. The long-range behavior of the
Coulomb potential, with its singularity at q → 0, is respon-
sible for the various differences, here addressed using
OFMD simulations. First, we consider the velocity auto-
correlation function ZðtÞ (VACF), which characterizes the
individual motion and coupling with the collective modes.
As such, it depends on the correlation at both short and long
ranges. Figure 2(a) shows the VACF of tungsten between
100 and 800 eV in units of the inverse effective plasma
frequency ω2

p ¼ 4πnQ2
ee2=M of each case, which is

ionization dependent (M is the ion mass). We observe that
all VACFs are almost synchronized over a wide range of
temperature, which reflects the Γ-plateau behavior. Notice
that the short time behavior stays close to the EOCP. This
indicates that the corresponding Einstein frequencies ωE
are close to the OCP values of ωp=

ffiffiffi

3
p

. The relaxation
time scales of the VACFs of the EOCP and OFMD are
comparable although the frequencies of oscillations around
the average are different. The same behavior is also obser-
ved in Fig. 2(b) for germanium with weaker oscillations
corresponding to a lower effective coupling parameter Γe. It
is possible to get better agreement with the EOCP VACFs
by a renormalization of the EOCP mass that depends on
screening. This is beyond the scope of this Letter and will
be treated in a forthcoming paper.
The preceding analysis suggests that the EOCP concept

can be used to predict transport coefficients by using
standard OCP fits (see Ref. [30] and references therein)
with the effective coupling parameter Γe. Both diffusion
coefficients and viscosities are obtained from OFMD
simulations by the Green-Kubo relations (see Refs. [47–49]
for diffusion and Ref. [50] for viscosity). Good agreement
for viscosity and diffusion for both tungsten and germa-
nium is found with the EOCP formulation as shown in
Fig. 3. Comparisons for plasmas of other species for such
an approach using the Thomas-Fermi ionization can be
found in Ref. [30].

TABLE II. Equation of state of germanium at 5.3 g=cm3.
POFMD is the pressure obtained by simulations, Peff is the sum
of the EOCP contribution and the electronic component as given
by Nikiforov [44] (see the Supplemental Material [34]), and
PSESA is the corresponding SESAME equation of state [45].

Elt T Γe POFMD Peff PSESA
eV Mbar Mbar Mbar

Ge 100 8 85 80 80
200 8 229 217 221
400 8 608 596 596
800 7 1509 1551 1494
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FIG. 2. (a) OFMD velocity autocorrelation functions of tung-
sten at 40 g=cm3 as a function of time in units of the inverse
plasma frequency for each temperature, given in Table I, com-
pared with the effective OCP one (red dashed line). (b) Same as
(a) except for germanium at 5.3 g=cm3.
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Finally, collective modes are evidenced by the dynamical
structure factor Sðq;ωÞ [51], which is of particular impor-
tance for x-ray scattering experiments. Here, we focus on
ion collective properties. The calculation of this quantity is
well documented, and we follow White et al. [52] and
Rüter et al. [53]. By collecting the peak frequencies of the
OFMD simulations of Sðq;ωÞ versus q, and the full widths
at half maximum (FWHMs) of these features, we produce
the dispersion relations shown in Fig. 4(a) for tungsten and
Fig. 4(b) for germanium, which can be fitted by ω ¼ csq=a
at low q, yielding the sound speed cs. As in the case of
the static structure, we observe good agreement with the

Yukawa dispersion relation at vanishing q. We used the
relation proposed by Rosenberg and Kalman [54] within
the quasilocalized charge approximation, which is particu-
larly well adapted to the wave dispersion in strong-coupling
situations [55]. For finite wave numbers (typically
q > 0.5), the frequencies of the OFMD modes are slowly
drifting out of the Yukawa curve and join smoothly with the
EOCP values for q > 1.5.
To summarize, a unified concept for hot dense plasmas

combining the OCP and Yukawa models is proposed. Its
merits have been assessed using orbital-free molecular
dynamics simulations in the hot dense plasmas regime.
The OCP and Yukawa models give complementary infor-
mation about the simulated plasmas, providing a compre-
hensive description of their static and dynamical properties.
The concept of an effective OCP connects these models
through an effective ionization that is unambiguously
defined. The EOCP facet is well adapted for short-range
correlations and for a straightforward evaluation of the
equation of state and transport coefficients. The properties
related to the correlations at large distance, like the sound
speed and the compressibility, need an explicit account of
the electron screening. Here, the Yukawa facet of this
unified concept, based on an EOCP ionization, is a sensible
approximation in this range where linear response theory
applies.
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