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We experimentally demonstrate a universal strategy for producing a quantum state that is orthogonal to
an arbitrary, infinite-dimensional, pure input one, even if only a limited amount of information about the
latter is available. Arbitrary coherent superpositions of the two mutually orthogonal states are then
produced by a simple change in the experimental parameters. We use input coherent states of light to
illustrate two variations of the method. However, we show that the scheme works equally well for arbitrary
input fields and constitutes a universal procedure, which may thus prove a useful building block for
quantum state engineering and quantum information processing with continuous-variable qubits.
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In the quantum mechanical context, states jψi and jψ⊥i
are said to be orthogonal when the overlap between the two
state vectors is zero, i.e., hψ jψ⊥i ¼ 0. Two states, which are
orthogonal to each other, are then maximally discernible
[1,2]. In a classical binary system, states denoted by 0 and 1
are orthogonal to and perfectly distinct from each other, and
the NOT operation will switch between them. In quantum
mechanics, a simple swap of 0 and 1 does not bring one
state to its orthogonal state, due to the superposition
principle. As an extreme case, a superposition state of
1=

ffiffiffi

2
p ðj0i þ j1iÞ is unchanged by such a swap operation.

The universal quantum NOT operation, which is defined as
an operation to bring a state to its orthogonal one, is indeed
not possible without some prior knowledge of the state [3],
just like it is impossible to perfectly and deterministically
clone or amplify a quantum state [4,5] without prior
information. An orthogonalizer with minimal information
required was demonstrated for states living in a limited
two-dimensional Hilbert space [6,7].
As far as a general quantum state in an infinite-

dimensional Hilbert space is concerned, the situation is
even more complicated because a given state will then have
infinite orthogonal states. Despite this fundamental limi-
tation, it has been recently proposed for an optomechanical
system by Vanner et al. [8] that a perfect orthogonalizer can
be in principle realized even if only some very limited
preliminary information about the input state is available.
One can generalize the proposal of Ref. [8] as follows:
given an arbitrary operator Ĉ, as we know its mean value
hĈi for the input state jψi, the operation

ÔC ≡ Ĉ − hĈi1̂ ð1Þ
converts the original state to an orthogonal state, where 1̂ is
the identity operator. It is straightforward to see that when
ÔC is applied to the input state the resulting state jψ⊥i ¼
N ÔCðjψiÞ, whereN is the normalization factor, is orthogo-
nal to jψi. This is equally applicable to pure states existing
within finite or infinite Hilbert spaces, but it does not
generally work for mixed states. Although the operator Ĉ
can be in principle arbitrary, the above procedure cannot be
applied if the input states are among its eigenstates because
the success probability of the operation drops to zero [9].
Here, we propose and demonstrate the generalized

orthogonalization procedure of Eq. (1) to infinite-
dimensional, continuous-variable (CV) states of light. In
addition to this, we show that this approach also naturally
leads to a method for producing arbitrary coherent super-
positions of orthogonal quantum states out of any input
pure one. For any complex number c, the (unnormalized)
superposition

cjψi þ jψ⊥i ¼ ðc1̂þN ÔCÞjψi ð2Þ

¼ ½N Ĉþ ðc −N hĈiÞ1̂�jψi ð3Þ

is realized by applying the same operation of Eq. (1) to the
input state, but with an appropriate change in the weight of
the identity operator. Therefore, once the orthogonalizer is
in operation, any quantum superposition of jψi and jψ⊥i,
which constitutes a general arbitrary CV qubit, can also be
straightforwardly realized.
In principle, a full tomographic reconstruction of a given

input state would allow one to design a specific setup to
generate theorthogonal one (and, possibly, a superposition of
the two). However, such a strategy would be very inefficient
and far from “universal.” State tomography involves the
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measurement of observable probabilities for a large number
of experimental settings, thereby requiring many identical
copies of the input state for an accurate estimation after a
numerical processingof themeasureddata sets. Furthermore,
once each state is reconstructed, one should design an
“ad hoc” experimental scheme to generate the orthogonal
one, and this might in general be far from trivial.
On the contrary, even if the measurement of the mean

value of operator Ĉ in our scheme ideally requires a large
number of identical copies of the input state, a measure of
accuracy may be found. Specifically, when there are onlyN
copies, the estimation of the mean value is accurate by
ΔC=

ffiffiffiffi

N
p

, where ΔC is the standard deviation of the
measurement outcomes for the expectation value of the
operator Ĉ. Thus, even though we do not claim that this
approach requires the least amount of resources, it is
certainly much more resource efficient than those based
on a full reconstruction (see a discussion on the level of
observation versus the amount of information about a state
in Ref. [10]). More importantly, a single universal exper-
imental apparatus, only depending on a single parameter
(the mean value hĈi), is necessary for our scheme to
orthogonalize arbitrary states and produce arbitrary quan-
tum superpositions. In the particular case of a set of input
states for which hĈi is the same, no change at all is needed
in the apparatus to process all the elements of the set.
Both the orthogonalizer and the procedure for producing

coherent superpositions are general enough to work based
on any operator Ĉ and with any pure input state jψi.
Choosing a particular operator implies designing the
experimental setup accordingly, but a specific apparatus
would then work for arbitrary input states, with the proper
adjustment of its parameters. To concisely demonstrate the
functioning of the above methods and their generality, in
the following we present the experimental analysis of
specific examples based on two different Ĉ operators
(therefore implying two completely different experimental
setups). We experimentally test both systems with one kind
of input state, but we also show that they are able to deal
equally well with arbitrary ones.
A particularly simple and interesting case is obtained

when Ĉ ¼ â†, the bosonic creation operator, which has no
eigenstates and can thus be safely applied independently of
the arbitrary state at the input. Here, one just needs to know
the mean value of â† on the particular input state to
construct the Ôa† ≡ â† − hâ†i1̂ orthogonalizer or a general
superposition as prescribed by Eq. (3). Both of these
operations can be experimentally implemented by extend-
ing some of the tools recently developed in our group. A
simplified scheme of the experimental setup is shown in
Fig. 1(a) (also see Ref. [9]). In particular, the photon
creation operator can be conditionally realized by means of
stimulated parametric down-conversion (PDC) in a non-
linear crystal seeded by the optical input state in the signal
mode [12–14]. The coherent superposition of this operation

and the identity can be realized by mixing the (herald) idler
PDC mode with a coherent light field on an unbalanced
beam splitter that erases the information about the origin of
a click in the heralding single-photon detector at one of its
outputs. By simply controlling both the relative phase
between the input and the coherent state impinging on the
beam splitter, and the reflectivity of the latter, different
superpositions of â† and 1̂ can be obtained, in particular
those corresponding to the orthogonalizer and to arbitrary
CV superposition states. Similar techniques, involving
phase-space displacement on the herald mode of condi-
tional state generation, have been recently used for quan-
tum state engineering up to two photons [15], and for the

FIG. 1. (a) Conceptual experimental scheme of the orthogonal-
izer and CV qubit generator based on photon addition by heralded
stimulated PDC. A click in the single-photon-counting module
(SPCM) normally heralds a single photon addition to the generic
input jψi state. However, if the PDC idler mode is mixed with a
coherent state jβi on a beam splitter (BS) prior to detection, a
superposition of the photon creation operator and the identity
with adjustable weights and phases can be obtained. In the actual
experiments we used coherent states jαi as the input states and the
operator superposition was implemented by using polarization
modes (see the Supplemental Material [9] for details). HD is a
time-domain homodyne detector triggered by SPCM clicks [11].
(b) Raw measured x quadrature distributions (marginals of the
Wigner function) for the input coherent states (ribbon-style
curves) and for the corresponding results of the orthogonalization
procedure (shaded areas) with jαj ¼ 0.5, 1.0, 2.0.
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generation of optical CV qubits made of superpositions of
squeezed vacuum and squeezed single-photon states [16].
We tested the concept presented above by using coherent

states jαi ¼ D̂ðαÞj0i as the input [where D̂ðαÞ is the
displacement operator [17]]. In this special case, the
orthogonalizer operator based on photon creation becomes

Ôa†ðαÞ ¼ â† − α�1̂; ð4Þ

and it is easy to see that, when applied to jαi, this results in
the displaced Fock state D̂ðαÞj1i, which is clearly orthogo-
nal to jαi [9]. Figure 1(b) illustrates the result of the
application of the orthogonalizer to coherent states of
different initial amplitudes. The x quadrature distributions
show that the Wigner functions of the orthogonal states are
differently displaced versions of a single-photon Wigner
function [18]. A full tomography of the input and output
states for the case with jαj ¼ 1.0 results in a mutual fidelity
of 0.4. The discrepancy from an ideal value of zero comes
from different sources of experimental imperfections that
limit the purity of the prepared and measured states and, as
a consequence, their orthogonality (a detailed discussion is
presented in the Supplemental Material [9]).
A simple adjustment of the parameters in the beam splitter

placed in the idler mode allows one to produce various CV
qubit states. In Fig. 2 we show the measured Wigner
functions for different equal-weight superposition states of

an input coherent state with jαj ¼ 1.0 and its orthogonal
state. In the different plots, the phase of the resulting CV
qubit is simply varied by properly controlling the relative
phase between the input and the displacement coherent states
and the reflectivity of the idler beam splitter. The fidelities of
the reconstructed states to the ideal superpositions of jαi and
jα⊥i are all quite large, and of the order of 90%.
In order to demonstrate the effectiveness and generality

of the proposed approach, we now consider another scheme
to realize the orthogonalizer. Since the mean number of
photons in a state is a parameter often easy to determine
experimentally, one may insert such a mean photon number
n̄ and the number operator n̂≡ â†â into Eq. (1), which thus
becomes

Ôn ≡ n̂ − n̄ 1̂ : ð5Þ

We put this scheme to an experimental test with the setup of
Fig. 3(a), which is similar to the one first developed for
testing the bosonic commutation relation [19] (see the
Supplemental Material [9] for a more detailed description).
Such a setup conditionally produces the arbitrary super-

position of operators

Aâ†âþ Bââ†; ð6Þ

which is seen to be proportional to n̂þ ½B=ðAþ BÞ�1̂ using
the bosonic commutation relation. Therefore, a state
orthogonal to a generic one of mean photon number n̄
can be straightforwardly obtained by adjusting the setup of
Fig. 3(a) so that B=ðAþ BÞ ¼ −n̄. It is seen that, when
used in combination to input coherent states jαi, this
scheme results in the same orthogonal state as for the
previous example. Note that we do not assume any
knowledge about the initial state except its mean photon
number. Thus, simply choosing another coherent state jα0i
as the orthogonal one is not a valid alternative. In any case,
the overlap of two coherent states jhαjα0ij2 ¼ e−jα−α0j2 is
never zero, especially in a regime of low intensities.
Figures 3(b) and 3(c) show the measured quadrature
distributions and the reconstructed Wigner functions for
such input and orthogonal output states, whose measured
mutual fidelity is F ¼ 0.34, while the fidelities Fc to an
ideal coherent state jα ¼ 0.78i are 0.96 and 0.18, respec-
tively (see the Supplemental Material [9] for more details).
To summarize, we have shown the first experimental

application of a universal orthogonalization procedure to
arbitrary CV optical states. Relying on a very limited
amount of preliminary information about the input states,
we verified the effectiveness and generality of this powerful
technique through two illustrative examples based on the
photon creation (â†) and number (n̂) operators. Simple
modifications in the experimental parameters also allowed
us to produce CV qubits based on the superposition of an
arbitrary input state jψi and its orthogonal jψ⊥i.

(a) (b)

(c) (d)

FIG. 2. Wigner functions for different balanced superpositions
of states jαi and jα⊥i with jαj ¼ 1.0, as reconstructed by
correcting for a detection efficiency of 70%. Panels (a) and
(b) correspond to states 1=

ffiffiffi

2
p ðjαi � jα⊥iÞ and panels (c) and

(d) correspond to states 1=
ffiffiffi

2
p ðjαi � ijα⊥iÞ, respectively. The

experimental fidelities F of the generated states to the ideal CV
superpositions are also shown. Different values of F are mainly
connected to the different level of stability in the experimental
superposition phase for the different states.
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Note that our goal is not that of producing a specific
quantum state, which could be prepared with simpler
methods anyhow, but rather to demonstrate a universal
scheme for producing orthogonal and CV qubit states
starting from arbitrary inputs. Coherent states were used
here only for their ease of preparation. Adjusting a single
parameter (for example, the reflectivity of a beam splitter)
to accommodate for a different hĈi in the chosen exper-
imental setup is sufficient for orthogonalizing and creating
quantum superpositions out of any input pure state.
To better illustrate this, we give in the following

(theoretical) examples of the generation of orthogonal
states using the same orthogonalizing operators Ôa† and
Ôn. We simulate the output orthogonal states using exactly
the same schemes analyzed in our experiments for two

other initial states that are representative cases of highly
nonclassical states: an even cat state jαi þ j − αi and a
squeezed vacuum ŜðζÞj0i (normalization is omitted in the
following for simplicity), where the single-mode squeezing
operator is given by

ŜðζÞ ¼ e−
ζ
2
â†2þζ�

2
â2 ð7Þ

with ζ ¼ reiϕ the squeezing parameter. Figure 4 shows the
theoretical simulation of the Wigner functions for the
orthogonal states generated by our experimental setups.
Note that, while the application of a generic orthogonaliz-
ing operator will always take any input state to its
orthogonal version, in general it is not the case that different
choices of the operator Ĉ used in the ÔC orthogonalizer
map to the same orthogonal state. This is evident from the
Wigner function plots in the figure: while both of the states
in Figs. 4(a2) and 4(a3) are orthogonal to the original cat
state jαi þ j − αi shown in Fig. 4(a1) [just as the states in
Figs. 4(b2) and 4(b3) are orthogonal to the squeezed
vacuum ŜðζÞj0i of Fig. 4(b1)], they are neither the same
orthogonal state nor are they orthogonal to each other.

(a)

(b)

(c)

FIG. 3. (a) Conceptual experimental scheme for the orthogo-
nalizer based on the photon number operator. The HTBSs are
high-transmittivity beam splitters; C is a coincidence logic
circuit. (b) Experimental homodyne detection traces for the
original input coherent state jαi (left panel) and for the state
obtained by the orthogonalization procedure (right panel). The
input amplitude was jαj ¼ 0.78, and ten different values of
the local oscillator phases were used. (c) Wigner functions of
the input coherent state and of its orthogonal (a displaced single-
photon Fock state) as reconstructed from the homodyne data after
correcting for the limited (70%) detection efficiency. The same
color scale as for Fig. 2 is used here.

(a1) (b1)

(a2) (b2)

(a3) (b3)

FIG. 4. Calculated Wigner functions of results of applying
different orthogonalizing operations to cat and squeezed states.
(a1) jαi þ j − αi. (a2) Ôa†ðjαi þ j − αiÞ.(a3) Ônðjαi þ j − αiÞ.
(b1) ŜðζÞj0i. (b2) Ôa† ŜðζÞj0i. (b3) ÔnŜðζÞj0i. For plots
(a1)–(a3) we take α ¼ 1, while for plots (b1)–(b3) we take
ζ ¼ 0.4. Here, the normalization is omitted in the expressions, but
the figures are properly normalized.
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This technique can become a useful tool for quantum-
state engineering, to produce custom-made quantum states.
Future goals should include testing the system with differ-
ent input states and extending its experimental application
to larger intensity input fields. Beyond pure photonics, our
scheme can also be applied to various physical systems
including phononic states of ions in a trap and nano-
mechanical oscillators [8]. Even though our demonstration
here is for relatively small-amplitude coherent states, the
method itself can be applied to bigger systems, and can be
thus used for the study of foundational issues, like the test
of quantum-to-classical transition models [20].
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