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The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum
superpositions provokes questions about the limitations that quantum mechanics itself imposes on the
possibility of their generation. In this work, we systematically study the problem of the creation of
superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a
universal probabilistic quantum protocol producing a superposition of two unknown quantum states.
Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states,
each having a fixed overlap with the known referential pure state. The protocol can be applied to generate
coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in
the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-
Gaussian states.
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The existence of superpositions of pure quantum states is
one of the most intriguing consequences of the postulates of
quantum mechanics. Quantum superpositions are respon-
sible for numerous nonclassical phenomena that are con-
sidered to be the key features of quantum theory [1], with
the prominent examples being the quantum interference
[2–4] and quantum entanglement [5]. The coherent addi-
tion of wave functions is also responsible for quantum
coherence, a feature of quantum states that recently
received a lot of attention [6–8]. Quantum superpositions
are not only important from the foundational point of view,
but they also underpin the existence of ultrafast quantum
algorithms (such as the Shor factoring algorithm [9] or
Grover search algorithm [10]), quantum cryptography [11],
and efficient quantum metrology [12].
The importance of quantum superpositions provokes

questions about the restrictions that quantum mechanics
itself imposes on the possibility of their generation. Studies
of the limitations of quantum mechanics have a long
tradition and are important both from the fundamental
perspective as well as for the applications in quantum
information theory. Quantum mechanics offers a number of
protocols that either outperform all existing classical

counterparts or even allow us to perform tasks that are
impossible in the classical theory (such as quantum
teleportation [13]). However, a number of no-go theorems
[14–19] restrict a class of protocols that are possible to
realize within quantum mechanics. Finally, such no-go
theorems can be themselves useful for practical purposes.
For instance, a no-cloning theorem can be used to certify
the security of quantum cryptographic protocols [11].
In this Letter, we consider the scenario in which we are

given two unknown pure quantum states and our task is to
create, using the most general operations allowed by
quantum mechanics, their superposition with some com-
plex weights. Essentially, the same question was posed in a
parallel work of Alvarez-Rodriguez et al. [20]: namely, the
authors asked about the existence of quantum adder—a
machine, that would superpose two registers with the
plus sign.
Here, we first prove a no-go theorem, showing that it is

impossible to create a superposition of two unknown states.
We discuss the relation of our theorem with the no-go
results of [20]. Subsequently, we provide a protocol that
probabilistically creates the superposition of two states
having fixed nonzero overlaps with some referential state.
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We show that, by using appropriate encoding, the protocol
can be used to generate superpositions of unknown vectors
from the subspace perpendicular to the referential state,
thus allowing for the generation of coherent superpositions
of the results of quantum subroutines of a given quantum
algorithm. This actually shows how to circumvent our no-
go theorem to some extent. We find this surprising as
intuitively the no-cloning theorem [14] should forbid
results of this type. We also discuss optical implementation
of the protocol, with the referential state being the vacuum
state. Finally, we discuss the differences between our
results, and analogous results concerning cloning.
Introduction.—Before we proceed we need to carefully

analyze the concept of quantum superpositions. Recall first
that the global phase of a wave function is not a physically
accessible quantity. This redundancy is removed when one
interprets pure states as one dimensional orthogonal pro-
jectors acting on the relevant Hilbert space [21]. In what
follows, the pure state corresponding to a normalized vector
jψi will be denoted by Pψ. Normalized vectors that rise to
the same pure state Pψ are called vector representatives of
Pψ . They are defined up to a global phase, i.e., Pψ ¼ Pψ 0 if
and only if jψ 0i ¼ exp ðiθÞjψi, for some phase θ. Let now
α, β be complex numbers satisfying jαj2 þ jβj2 ¼ 1 and let
Pψ , Pϕ be two pure states. By Pα;βðjψi; jϕiÞ we denote the
projector onto the superposition of jψi and jϕi

Pα;βðjψi; jϕiÞ ¼ PΨ; jΨi ¼ N −1ðαjψi þ βjϕiÞ; ð1Þ

where N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Reðᾱβhψ jϕiÞp

is a normalization fac-
tor. The crucial observation is that Pα;βðjψi; jϕiÞ is not a
well-defined function of the states Pψ and Pϕ. This is
because Pα;βðjψi; jϕiÞ depends on vector representatives
jψi, jϕi, whose phases can be gauged independently.
Consequently, we have the infinite family of pure states

Pα;β½jψi; exp ðiθÞjϕi�; θ ∈ ½0; 2πÞ; ð2Þ

which can be legitimately called superpositions of Pψ and
Pϕ. This phenomenon appears already in the simplest
example of a qubit. For Pψ ¼ j0ih0j, Pϕ ¼ j1ih1j, and

α ¼ β ¼ 1=
ffiffiffi
2

p
, the family given by (2) can be identified

with the equator on the Bloch ball. The analogous analysis
was conducted in [20] and it was argued there that the
ambiguity of the relative phase forbids the existence of the
universal quantum adding machine. In our approach, we
propose to relax the definition of superposing, so that it is
not excluded from the very definition. Namely, we ask if
there exists a machine, that for any given two states it
prepares a state, that is the projector corresponding to a
superposition of some representatives of the states with the
required amplitudes and phases. This is a well-defined
question, and it is not a priori clear whether it has a positive
answer.

Let us set the notation. By HermðHÞ we denote the set
of Hermitian operators on Hilbert space H. By CPðH;KÞ
we denote the set of completely positive (CP) maps
Λ∶HermðHÞ → HermðKÞ.
We can now formalize our scenario. We assume that we

have access to two identical quantum registers (to each of
them we associate a Hilbert spaceH) and we know that the
input state is a product of unknown pure states Pψ ⊗ Pϕ.
Our aim is to generate the superposition Pα;βðjψi; jϕiÞ by
some quantum protocol, i.e., a sequence of operations
allowed by quantum mechanics. Since the superposition
Pα;βðjψi; jϕiÞ is a state on a single quantum register, the
protocol takes two states as an input and outputs a state on a
single register. This can be physically achieved by the first
application of the general quantum channel [22] to two
systems and then disregarding (partial tracing) one of them.
We also allow for postselection; i.e., we allow the pos-
sibility that the desired output state is obtained only
probabilistically, depending on the outcome of some
measurement on the disregarded register. Mathematically,
such operations can be characterized [22] as CP maps Λ ∈
CPðH⊗2;HÞ that do not increase the trace, i.e., tr½ΛðρÞ� ≤
trðρÞ for all states ρ. The number tr½ΛðρÞ� is the probability
that the state ρ undergoes the transformation ρ →
ΛðρÞ=tr½ΛðρÞ�.
No-go theorem.—We prove the no-go result in the

strongest possible form. First, we impose the minimal
assumptions on the generated superpositions, assuming
only that vectors jψi, jϕi are vector representatives depend-
ing on the input states [in other words, we are not interested
in the relative phase θ of the superposition appearing in
(2)]. Second, we allow the probabilistic protocols; i.e., the
superposition may be created with some probability.
Theorem 1.—Let α, β be nonzero complex numbers

satisfying jαj2 þ jβj2 ¼ 1 and let dimH ≥ 2. There exists
no nonzero completely positive map Λ ∈ CPðH⊗2;HÞ
such that for all pure states P1, P2

ΛðP1 ⊗ P2Þ ∝ jΨihΨj; ð3Þ

where

jΨi ¼ αjψi þ βjϕi ð4Þ
and jψihψ j ¼ P1, jϕihϕj ¼ P2 and the representatives jψi,
jϕi may in general depend on both P1 and P2.
Remark.—In particular, for two pairs ðP1;P2Þ and

ðP1;P0
2Þ the representative of P1 can be different for each

pair.
Proof.—Assume that there exists a nonzero CP

map Λ satisfying (3). Let the collection of operators
fVigi∈I; Vi∶H⊗2 → H, form the Kraus decomposition
[22] of Λ, ΛðρÞ ¼ P

i∈IViρV
†
i . Since operators λjΨihΨj,

λ ≥ 0, belong to the extreme ray of the cone of nonnegative
operators on H we must have
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ViP1 ⊗ P2V
†
i ∝ jΨihΨj; for all i ∈ I: ð5Þ

Consequently, it is enough to consider only CP maps that
have one operator in their Kraus decomposition. In such a
case (3) reduces to the investigation of a single linear
operator. Equation (5) must necessarily hold for P1, P2

having support on two-dimensional subspaces of H.
Therefore, it suffices to show that in the qubit case only
operators Vi that satisfy condition (5) are the null operators.
We present the proof of this in the Supplemental
Material [23].
Theorem 1 shows that, even if we allow for postselec-

tion, there exists no quantum operation that produces
superpositions of all unknown pure quantum states with
some probability (we allowed this probability to be zero for
some pairs of input states and in general it can be different
for different inputs). We would like to stress that the
creation of superpositions is still impossible even if we
allow for the arbitrary dependence of the relative phase of
the input states. Namely, in our formulation of the problem
we explicitly assumed that vector representatives jψi, jϕi
of states Pψ and Pϕ are some functions of these states. As a
matter of fact, otherwise one would not be able to formulate
the problem of generation of superpositions in a consistent
manner. We emphasize that in that respect the problem of
the creation of superpositions is different from quantum
cloning [24]. Moreover, to our best knowledge, there is no
immediate connection between the no-cloning theorem
[14,15] and its generalized variants (such as no-deleting
theorem [17] or no-anticloning theorem [18]) to our result.
This is a consequence of the fact that Λ must be non-
invertible and therefore cannot be used to obtain a cloning
map. Moreover, in the formulation of the theorem we allow
for situations in which for some input states Pψ ⊗ Pϕ the
probability of success is zero.
Constructive protocol.—Here, we study whether it is

possible to create quantum superpositions under the knowl-
edge about the input states. Except for specifying the class
of input states for which a given protocol would work, it is
also necessary to prescribe which superpositions will be
generated [see the discussion before Eq. (2)]. In what
follows, we present an explicit protocol that generates
superpositions of unknown pure states Pψ , Pϕ having fixed
nonzero overlaps with some referential pure state Pχ (see
Fig. 1). Let us describe the superpositions that will be
generated by our protocol. Let jχi be a vector representative
of Pχ . For every pair of normalized vectors jψi, jϕi
satisfying hχjψi ≠ 0, hχjψi ≠ 0 we define their super-
position

jΨi ¼ α
hχjϕi
jhχjϕij jψi þ β

hχjψi
jhχjψij jϕi: ð6Þ

The norm of this vector is given by

N Ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Re

�
ᾱβ

trðPjχiPjψiPjϕiÞ
jhχjϕijjhχjψij

�s
: ð7Þ

The vector jΨi changes only by a global phase once any of
the vectors jψi, jϕi, jχi get multiplied by a phase factor.
Consequently, PΨ is a well-defined function of the states
Pjψi;Pjϕi, provided they have nonzero overlap with Pχ .
This can be also seen from the explicit formula

jΨihΨj ¼ jαj2Pψ þ jβj2Pϕ

þ
�
αβ�

PψPχPϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðPψPχÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðPϕPχÞ

p þ H:c:

�
: ð8Þ

One could argue that the above choice of the super-
position jΨihΨj is somewhat arbitrary. However, the
mapping ðPψ ;PϕÞ → jΨihΨj is related to the so-called
Pancharatnam connection and appears in studies concern-
ing the superposition rules from the perspective of
geometric approach to quantum mechanics [25,26].
Moreover, it is shown in [27] that Eq. (6) has a strong
connection with the concept of the geometric phase.
Finally, from the purely operational grounds, Eq. (6)
constitutes a rightful superposition of states Pψ , Pϕ and
as we vary coefficients α, β we can recover all possible
superpositions of Pψ , Pϕ.
Theorem 2.—Let Pχ be a fixed pure state on Hilbert

spaceH. There exists a CPmap Λsup ∈ CPðC2 ⊗ H⊗2;HÞ
such that for all pure states Pψ , Pϕ on H satisfying

trðPχPψ Þ ¼ c1; trðPχPϕÞ ¼ c2; ð9Þ
we have

ΛsupðPν ⊗ Pψ ⊗ PϕÞ ∝ jΨihΨj; ð10Þ
where Pν, jνi ¼ αj0i þ βj1i, is an unknown qubit state and
the vector jΨi is given by (6). Moreover, a CP map Λsup

realizing (10) is unique up scaling.
Proof.—We first present a protocol that realizes (10).

Let us define an auxiliary normalized qubit vector
jμi ¼ Cð ffiffiffiffiffi

c1
p j0i þ ffiffiffiffiffi

c2
p j1iÞ, where C is a normalization

constant. We set Λsup ¼ Λ4∘Λ3∘Λ2∘Λ1, where

FIG. 1. Graphical representation of the class of input states
satisfying trðPχPψ Þ ¼ c1, trðPχPϕÞ ¼ c2 for H ¼ C2. For con-
venience we set Pχ ¼ j0ih0j.
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Λ1ðρÞ ¼ V1ρV
†
1; V1 ¼ j0ih0j ⊗ I ⊗ Iþ j1ih1j ⊗ S;

ð11Þ

Λ2ðρÞ ¼ V2ρV
†
2; V2 ¼ I ⊗ I ⊗ jχihχj; ð12Þ

Λ3ðρÞ ¼ V3ρV3; V3 ¼ Pμ ⊗ I ⊗ I; ð13Þ

Λ4ðρÞ ¼ tr13ðρÞ: ð14Þ
In the above, S denotes the unitary operator that swaps
between two copies ofH and tr13ð·Þ is the partial trace over
the first and the third factor in the tensor product
C2 ⊗ H ⊗ H. For a graphical presentation of the above
protocol, see Fig. 2. Operation Λsup is completely positive
and trace nonincreasing. Direct calculation shows that (10)
indeed holds. We prove the uniqueness result in the
Supplemental Material [23].
The probability that the above protocol will successfully

create superpositions of states is given by

Psucc ¼ tr½ΛsupðPν ⊗ Pψ ⊗ PϕÞ� ¼
c1c2

c1 þ c2
N 2

Ψ: ð15Þ

The map Λsup cannot be rescaled to increase the probability
of success. This follows from the (tight) operator inequality
ðV3V2V1Þ†ðV3V2V1Þ ≤ I ⊗ I ⊗ I. Taking into account the
uniqueness (up to scaling) of Λsup, we get that Psucc from
(15) is the maximal achievable probability of success [for
inputs specified in the assumptions of Theorem (2)].
However, for fixed coefficients α, β it is possible to design
a CP map that can achieve a higher probability of success
[23]. Moreover, it is possible to generalize the protocol Λsup

to the situation when we have d input states (having
nonzero overlap with Pχ) and coefficients of superposition
are encoded in an unknown state of a qudit [23].
The existence of the map Λsup shows that the problem of

creating superpositions of quantumstates differs greatly from
the cloning problem. Probabilistic quantum cloning of pure
states is possible if and only if we have a promise that the
input states belong to the family of states whose vector
representatives form a linearly independent set [28].
Consequently, the aforementioned family of states must be
discrete. Our protocol shows that it is possible to probabilisti-
cally create superpositions from unknown quantum states
belonging to uncountable families of quantum states.
Applications.—There exist deterministic circuits realiz-

ing classical arithmetic operations (like addition,

multiplication, exponentiation, etc.) on a quantum com-
puter [29]. However, to our best knowledge there exist no
protocols realizing an addition on vectors belonging to the
Hilbert space responsible for the independent quantum
computations. We now present a method to generate a
coherent superposition of results of quantum computations.
Assume that α ¼ β ¼ ffiffiffiffiffi

c1
p ¼ ffiffiffiffiffi

c2
p ¼ 1=

ffiffiffi
2

p
. By setting the

overlap of vector representatives of Pψ and Pϕ with jχi to
be positive we get

jψi ¼ 1ffiffiffi
2

p jχi þ 1ffiffiffi
2

p jψ⊥i; jϕi ¼ 1ffiffiffi
2

p jχi þ 1ffiffiffi
2

p jϕ⊥i;

ð16Þ
where unit vectors jψ⊥i, jϕ⊥i are perpendicular to jχi.
Input states Pψ , Pϕ are in one-to-one correspondence with
the vectors jψ⊥i, jϕ⊥i. By the application of Λsup it is
possible to obtain a state having the (nonnormalized) vector
representative

jΨi ¼ jχi þ 1

2
ðjψ⊥i þ jϕ⊥iÞ; ð17Þ

with the probability Psucc ¼ 1
4
ð1þ 1

4
∥jψ⊥i þ jϕ⊥i∥2Þ ≥ 1

4
.

We have obtained a state encoding the superposition of
unknown vectors jψ⊥i, jϕ⊥i encoded in states Pψ and Pϕ,
respectively. The method presented above effectively super-
poses thewave functions coherently, provided one has access
to the auxiliary one dimensional subspace (spannedby jχi). It
is highly unexpected but by changing the perspective and by
treating as “primary” objects the vectors perpendicular to jχi
we have managed to effectively get around the no-go result
from Theorem 1. To apply the above protocol, one has to run
quantum computation in a the perpendicular space. In the
Supplemental Material [23], we present an exemplary
scheme implementing such a computation.
The protocol Λsup can be also used to generate non-

classical sates in the context of quantum optics. Let the
states Pψ , Pϕ describe quantum fields in two different
optical modes. Hilbert spaces associated with each of the
modes are isomorphic and can be identified with the single-
mode bosonic Fock space. Moreover, let the auxiliary qubit
be encoded in a polarization of a single photon in a different
optical mode or in another two level physical system. In
such a setting the natural choice of the state Pχ is the Fock
vacuum j0Fih0Fj describing the state of the field with no
photons. As an input we can put coherent or pure Gaussian
states [30] that have fixed overlaps with the vacuum. Then,
the protocol Λsup generically creates highly nonclassical or,
respectively, non-Gaussian states. Operations Λ2, Λ3, Λ4

are relatively easy to realize in this setting. The most
demanding operation is the conditional swap Λ1. However,
the conditional swap can be realized via the implementation
of standard beam splitters of phase flip operation [31]. The
latter can be in principle [32] obtained by coupling light to

FIG. 2. Graphical representation of the circuit realizing the
map Λsup.
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atoms inside the cavity, trapped ions, or by the usage of
cross-Kerr nonlinearities in materials with an electromag-
netically induced transparency. Despite the possible diffi-
culties with the implementation, the map Λsup is worth
realizing as it gives the maximal probability of success.
Moreover, the protocol Λsup is universal and can be used in
different physical scenarios.
Discussion.—Let us conclude by stating some open

problems. First of all, the relation of our no-go theorem
to other no-go results in quantum mechanics is not clear
and requires further investigation. The constructive proto-
col presented by us suggests a connection with the recent
works concerning the problem of controlling an unknown
unitary operation [33–37] (the state Pχ can be regarded as
an analogue of the known eigenvector of the “unknown”
operation U allowing for its control). Second, it is interest-
ing to study the problem of the approximate generation of
quantum superpositions (in analogy to approximate quan-
tum cloning [38]). Another possible line of research is to
investigate protocols designed especially to generate super-
positions of states naturally appearing in the experimental
context (like pure coherent or Gaussian states).
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