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Recent studies show that spherical motile microorganisms in turbulence subject to gravitational torques
gather in down-welling regions of the turbulent flow. By analyzing a statistical model we analytically
compute how shape affects the dynamics, preferential sampling, and small-scale spatial clustering. We find
that oblong organisms may spend more time in up-welling regions of the flow, and that all organisms are
biased to regions of positive fluid-velocity gradients in the upward direction. We analyze small-scale spatial
clustering and find that oblong particles may either cluster more or less than spherical ones, depending on
the strength of the gravitational torques.
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Patchiness in suspensions of microorganisms is frequently
observed on a range of spatial scales. The underlying
mechanisms differ, depending on the properties of the
microorganisms, and upon the spatial scale. Patchiness
can be caused by density stratification and vertical shears
[1], by predator-prey cycles, or by interactions between the
organisms and water-column gradients—in light, chemistry,
turbulence, and in hydrostatic pressure [2]. Patchiness is
important because many biological processes (mating,
feeding, predation) rely on individual encounters [3], and
the encounter rate is strongly influenced by small-scale
number-density fluctuations.
Gravitaxis may cause such inhomogeneities in the spatial

distribution of motile microorganisms. Density or drag
asymmetries of the body give rise to torques affecting the
swimming direction [4–6]. When the effects of gyrotactic
torques and fluid-velocity gradients balance, inhomogene-
ities may form in the spatial distribution, as shown by the
microalgae Chlamydomonas nivalis swimming up against
a down-welling pipe flow. The microalgae gather in the
center of the pipe where the down-welling velocity is
largest [7]. Gyrotaxis may trap motile organisms in macro-
scopic shear gradients [8,9], and fluctuating vorticity may
cause patchiness [10]. This is confirmed by recent direct
numerical simulations (DNS) of motile, spherical micro-
organisms in turbulence [11] revealing that the organisms
are more likely to be found in down-welling regions of the
turbulent flow; they “preferentially sample” such regions.
These results raise three fundamental questions that we

address and answer in this Letter. First, how does shape
affect the dynamics in turbulence of motile microorganisms
subject to gyrotaxis? In Ref. [11] the organisms were
assumed to be spherical. Nonspherical organisms respond
not only to turbulent vorticity but also to turbulent strain
[12–15]. This causes passive rods to exhibit intricate

orientational patterns on the surface of turbulent and other
complex flows [16–18]. Also, shape strongly affects the
trajectories of active particles in model flows [19–21], and
recent DNS indicate that prolate gyrotactic organisms
cluster less than spherical ones when gyrotaxis is strong
[22]. Second, where do the organisms go in turbulence?
Are there circumstances where the organisms may not
gather in down-welling regions, or where other mecha-
nisms of preferential sampling may apply? Third, the fact
that orgamisms tend to gather in certain regions of the flow
(preferential sampling) does not explain which mechanisms
actually cause them to get in contact. To determine these
one must follow the dynamics of two organisms that are
initially very close together, and determine whether they
tend to approach further or move apart. We refer to the
resulting small-scale spatial fluctuations in the number
density as “small-scale clustering”.
Statistical model.—To answer these questions we use a

simplified model [7,11,22] for the translation and rotation
of small axisymmetric active particles subject to turbulence
and gyrotaxis:

_r≡ v ¼ uðr; tÞ þ vsn and _n ¼ ωðr; tÞ ∧ n: ð1Þ
Dots denote derivatives with respect to time t, r is the particle
position, and u is the flow velocity. Each particle swims with
constant speed vs in the direction n of its symmetry axis
(jnj ¼ 1). The angular velocity of the particle is

ωðr; tÞ ¼ ðĝ ∧ nÞ=ð2BÞ þΩðr; tÞ þ Λn ∧ ½Sðr; tÞn�: ð2Þ

The first term on the right-hand side describes gyrotaxis.
The unit vector ĝ points in the direction−ez of gravity, andB
is the reorientation time [7,11]. It depends on the mass
distribution within the particle, and on its shape through
hydrodynamic resistance. The other terms on the right-hand
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side of Eq. (2) represent the effect of the turbulent velocity
gradients upon the particle orientation [12]:Ω ¼ ð∇ ∧ uÞ=2,
and S is the symmetric part of the matrix A of fluid-velocity
gradients. The parameter Λ characterizes particle shape: Λ ¼
0 for spheres, andΛ ¼ 1 for infinitely thin rods. Equation (2)
disregards turbulent accelerations. In most marine conditions
this is an excellent approximation [23]. We model the
dissipative range of turbulence by incompressible, homo-
geneous, isotropic Gaussian random functions with typical
length, time, and speed scales η, τ, u0 [24]. This neglects
inertial-range properties which may become important for
particles that are larger than the Kolmogorov length [25]. We
note that the dissipative-range turbulent fluctuations are
universal [26], but they are not Gaussian. We comment
on this difference between turbulence and the statistical
model below.
There are four dimensionless parameters: the shape

parameter Λ, the reorientation time Ψ ¼ B=τ, the swim-
ming speed Φ ¼ vsτ=η, and the Kubo number Ku ¼ u0τ=η.
We vary the parameters independently, keeping B constant
as Λ is changed. Ku is a dimensionless measure of the
correlation time of the flow.
Our choice of the dimensionless parameters is dictated

by the method (explained below). DNS employ different
dedimensionalizations [11]: B by the Kolmogorov time
τK ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrhAATi∞
p

, and vs by the corresponding
Kolmogorov speed uK. Our dimensionless parameters
translate to those used in the DNS as ΨDNS ∼ KuΨ and
ΦDNS ∼ Φ=Ku. We expect that the statistical-model results
become independent of Ku at large Ku and qualitatively
agree with DNS results [24].
Typical values of B, vs are given in Ref. [5]: B ∼ 1–5 s

and vs ∼ 0.1–1 mm=s. Typical ocean dissipation rates
are ε ∼ 1–102 mm2=s3 for surface water [27], giving
Kolmogorov times, lengths, and speeds in the range
τK ∼ 0.1–1 s, η ∼ 0.3–1 mm, and uK ∼ 1–3 mm=s. These
estimates yield ΨDNS ∼ 1–50 and ΦDNS ∼ 0.03–1. In
Ref. [28] smaller dissipation rates, ε ∼ 10−4 mm2=s3, are
quoted for the very deep sea. This extends the ranges to
ΨDNS ∼ 0.01–50 and ΦDNS ∼ 0.03–10.
Method.—Equations (1), (2) can be solved by iteratively

refining approximations for the path a particle takes
through the flow [24,29,30]. This results in expansions
of steady-state averages in powers of Ku and allows us to
determine how the remaining parameters (Φ, Ψ, and Λ)
affect preferential sampling and small-scale clustering. The
details of this calculation are given in the Supplemental
Material [31]. Here we outline the essential steps. First, to
consistently track the orders in the expansion we dedi-
mensionalize t0 ¼ t=τ; r0 ¼ r=η; u0 ¼ u=u0. Second, we
expand the dynamics of the vector n in powers of Ku:

nðt0Þ ¼
X

∞

q¼0

nqðt0ÞKuq: ð3Þ

Inserting this ansatz into (1), (2) and identifying terms of
order Kuq yields equations for nq that can be solved in
terms of np for p < q. The lowest-order solution in Ku is
just n0 ¼ −ĝ. This yields a lowest-order deterministic
approximation for the particle position at time t0:

r0detðt0Þ ¼ r00 − Φĝt0: ð4Þ

Third, we expand Eqs. (1), (2) in terms of deviations from
the deterministic trajectory δr0ðt0Þ≡ r0ðt0Þ − r0detðt0Þ pre-
cisely as described in Ref. [24]. In the fourth and final
step we average over the fluid-velocity fluctuations in
the statistical model. In the remainder of this Letter we
summarize the results obtained in this way.
Preferential sampling.—Consider the steady-state aver-

ages of the z-component uz of the fluid velocity and of its
gradient, Azz, both evaluated at the particle position.
Analytical results for these averages are derived to lowest
order in Ku in the Supplemental Material [31], Eqs. (S15)
and (S16). These expressions are plotted in Fig. 1. Here we
quote only limiting results. For small Φ we have

hAzzi∞
η

u0
∼ KuΦ2

dð1 − ΛÞ þ 2ðΛþ 2Þ
d

Ψð4Ψþ 1Þ
ð2Ψþ 1Þ2 ;

ð5aÞ

huzi∞
u0

∼ −KuΦ
dð1 − ΛÞ þ 2

d
Ψ

2Ψþ 1
; ð5bÞ

d is the spatial dimension. For large Φ we find

hAzzi∞
η

u0
∼
Ku
Φ

dþ 1

2d
ð1 − ΛÞ

ffiffiffi

π

2

r

; ð6aÞ

huzi∞
u0

∼
Ku
Φ

½dðΛ − 1Þ þ 2Λ�
2d

: ð6bÞ

What can we learn from these analytical results?
Equations (5a) and (6a) show that the particles collect in
the sinks of the transversal flow-velocity field, Tr⊥A≡
−Azz < 0. This is because gyrotaxis breaks up-down
symmetry: when Ψ is small the particles swim essentially
upwards (in the ez direction), and gather in transversal
sinks irrespective of their shape and swimming speed.
Simulations [Fig. 1(a)] confirm the theory.
Motivated by Kessler’s study in pipe flows [7] the

authors of Ref. [11] concluded that spherical particles
preferentially sample down-welling regions also in turbu-
lence. This is not in contradiction with the result discussed
above because particles may preferentially sample different
observables. In fact Eqs. (5b) and (6b) explain that
spherical particles are biased towards down-welling regions
(as observed in DNS [11]), in addition to sinks in the
transversal flow. But (6b) also shows that elongated
particles [Λ > d=ðdþ 2Þ] preferentially sample up-welling
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regions for large enough Φ. This is seen in Fig. 1(c) which
shows huzi∞ (Eq. (S15) in the Supplemental Material [31])
for Ku ¼ 0.1 and d ¼ 2 as a function of Φ. Also shown are
results of statistical-model simulations, in excellent agree-
ment with theory. Figure 1(d) shows that the same con-
clusions hold in three spatial dimensions for Ku ¼ 1. Rods
sample upwelling regions when Φ is larger than (approx-
imately) unity.
It is remarkable that the shapes of the curves at Ku ¼ 0.1

are very similar to those at large Ku. This means that the
small-Ku theory qualitatively explains what is observed in
the statistical-model simulations at large Ku and in DNS for
spherical particles [11].
In the limit of large Φ particles swim rapidly upwards

and experience the flow as a white-noise signal (as in rapid
gravitational settling [30]). This limit is universal; particles
in any homogeneous, isotropic and incompressible flow

show preferential sampling according to Eq. (6). This means
that the small-Ku theory should describe results of statistical-
model simulations at Ku ¼ 1 quantitatively for large Φ.
This is confirmed by Figs. 1(b) and 1(d).
For small Φ DNS [11] show that the average of uz is

proportional to Φ for small Φ, so that huzi∞=Φ is constant.
Equation (5b) shows this behavior, in good agreement with
simulations [Fig. 1(e)].
We conclude with a quantitative comparison of statis-

tical-model and DNS results [11]. As an example consider
the dependence of huzi∞ on the reorientation time B.
Figure 1(f) shows that the statistical-model result becomes
independent of Ku for large Ku, and that it reproduces the
DNS results fairly well; it explains the B=τK dependence of
huzi∞ of the DNS results up to a prefactor of order unity.
This factor is due to the fact that fully developed turbulent
velocity fluctuations in the dissipative range differ from
those in the statistical model: they are not Gaussian, more
persistent, and the probability of straining regions to occur
is higher [24].
Small-scale clustering.—Which mechanisms cause two

particles caught in the same flow region to actually collide?
This is a two-particle problem, only indirectly related to
preferential sampling. Fluctuations in the separations
between nearby particles are determined by the dynamics
of the particle-velocity gradients ∂vi=∂rj. Small-scale clus-
tering occurs where ∇ · v < 0. We have computed h∇ · vi∞
to lowest order in Ku. The result is quite lengthy [Eq. (S32)
in the Supplemental Material [31] ]. For small Φ the full
expression simplifies to

h∇ · vi∞η=u0 ∼ −KuðΦΨÞ2BdðΛÞ for Φ ≪ 1; ð7Þ

with BdðΛÞ≡ ½ðdþ 2Þðdþ 4Þ − 2dðdþ 4ÞΛþ ð4þ 2dþ
d2ÞΛ2�=d. Since BdðΛÞ > 0, Eq. (7) implies small-scale
clustering. For spherical particles (Λ ¼ 0) the quadratic
dependence of h∇ · vi∞ on ΦΨ was derived in Ref. [11]
(and also in Ref. [32]): expanding Eqs. (1), (2) for B ≪ τ
gives

∇ · v ∼ vsB½−ð1þ ΛÞ∂2
zuz þ ð1 − ΛÞð∂2

zuz − ΔuzÞ�: ð8Þ

SubstitutingΛ ¼ 0 yields Eq. (6) of Ref. [11], and averaging
Eq. (8) along particle paths results in Eq. (7). The factor vsB
in (8) corresponds to one factor of ΦΨ in (7). The second
factor of ΦΨ comes from averaging the velocity derivatives
in Eq. (8). We note that Tr⊥A does not figure in Eq. (8):
preferential sampling of sinks in the flow-velocity field
perpendicular to gravity does not contribute to small-scale
clustering, showing that the two effects are distinct [24].
Expanding the full result (S32) for large Φ gives

h∇ · vi∞η=u0 ∼ −KuΦΨ2EdðΛÞ for Φ ≫ 1; ð9Þ

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Preferential sampling. (a) hTr⊥Ai∞ as sampled by the
particles. Results of simulations of statistical model: symbols.
Eq. (5a): lines. Parameters: Ku ¼ 0.1, Ψ ¼ 0.1, Λ ¼ 0 (red filled
circles), Ψ ¼ 1, Λ ¼ 0 (blue filled diamonds), Ψ ¼ 0.1, Λ ¼ 1
(light green filled squares) Ψ ¼ 1, Λ ¼ 1 (pink filled triangles).
(b) The same but for Ku ¼ 1 (theory only for large Φ). (c) huzi∞
as sampled by the particles for Ku ¼ 0.1. (d) Same but for
Ku ¼ 1. (e) huzi∞=vs as a function of Φ for Ku ¼ 0.1.
(f) huzi∞=vs versus B=τK for Λ ¼ 0 and Ku ¼ 1 (red filled
triangles), Ku ¼ 2 (dark green filled stars), Ku ¼ 5 (brown filled
triangles), Ku ¼ 10 (purple filled triangles). Hollow markers
show DNS data from Fig. 3(d) in Ref. [11] (at Reλ ¼ 64). All data
are for values of Φ from the small-Φ plateau observed in DNS
[11], and also in the statistical model (for Ku ¼ 0.1 this plateau is
shown in panel (e), for Ku ¼ 1 in Fig. S1 in the Supplemental
Material [31]). Panels (a), (c), (e) are for d ¼ 2, panels (b), (d), (f)
for d ¼ 3.
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with EdðΛÞ≡
ffiffiffiffiffiffiffiffi

π=2
p ðdþ1Þðdþ3ÞðΛ−1Þ2=d. For spheri-

cal particles the ΦΨ2 dependence was derived in Ref. [32].
Let us now analyze the shape dependence of Eq. (7). The

Λ dependence of BdðΛÞ explains that rods (Λ ¼ 1) cluster
less than spheres (Λ ¼ 0), consistent with the DNS results
reported in Ref. [22]. But when gyrotaxis is weak, spheres
are essentially randomly oriented, unlike neighbouring rods
that are aligned by turbulent shears. In this limit motile rods
must cluster more than spheres. This is demonstrated
below, but it is not captured by Eqs. (7) and (9) which
must fail for large Ψ because the limit Ψ → ∞ is singular,
and due to the occurrence of singularities in the dynamics
of the gradients of n at large but finite values of Ψ (see
Supplemental Material [31]). The first caveat also applies to
Eqs. (5) and (6).
Fractal dimension.—DNS show [11] that the small-scale

spatial patterns of motile gyrotactic organisms are fractal.
This may substantially enhance their encounter rates [33].
We analyze the fractal patterns for finite but small Ku, in
two dimensions. We expect qualitatively the same result in
three dimensions. The fractal patterns are characterized by
“Lyapunov exponents” λ1 and λ2

λ1 ≡ lim
t→∞

t−1 ln
RðtÞ
Rð0Þ and λ1 þ λ2 ≡ lim

t→∞
t−1 ln

AðtÞ
Að0Þ :

ð10Þ

These exponents quantify the expansion (contraction) rates
of the distance RðtÞ between two initially nearby particles,
and of the area element AðtÞ spanned by the separation
vectors between three nearby particles. The fractal
Lyapunov dimension is defined by [24,34]

dL ≡ 1 − λ1=λ2; ð11Þ

assuming λ1 > 0 and λ1 þ λ2 < 0. When dL < 2 fractal
clustering occurs. To evaluate dL we use λ1 þ λ2 ¼ h∇ · vi∞,
Eq. (S32), and compute λ1 to order Ku4. The result is
lengthy; in the Supplemental Material [31] we quote the
result to order Ku2, Eq. (S31). To this order it is independent
of Ψ and Λ. For small values of Φ Eq. (S31) simplifies to
λ1τ ∼ Ku2ð1 − 3Φ2Þ for d ¼ 2. Together with (7) this
implies ΔL ≡ d − dL ∼ Φ2Ψ2 consistent with the results
of Refs. [11,32] for spherical particles. Figure 2(a) shows the
analytical result for dL as a function of Φ. It is in good
agreement with numerical simulations of the statistical
model (d ¼ 2) for Ku ¼ 0.1. We see that spherical organ-
isms cluster more than rods. As explained above this is
expected for strong gyrotaxis.
But when the effect of the gravitational torque is small

then prolate organisms cluster more: in the absence of
gyrotaxis, rotational symmetry ensures that active spherical
particles remain uniformly distributed, but rodlike particles
show fractal clustering. Panel (b) in Fig. 2 demonstrates
this cross-over. It shows dL forΦ ¼ 1, Ku ¼ 1 as a function

of Ψ. We arrive at qualitatively similar conclusions by
numerically computing the fractal correlation dimension
d2. But the numerical values found for d2 differ from dL
This shows that the spatial distribution is multifractal [24].
Conclusions.—First, our statistical-model calculations

explain how the dynamics of gyrotactic motile microorgan-
isms depends on the dimensionless parameters of the
problem: Λ (shape), Φ (swimming speed), and Ψ (reor-
ientation time). Second, we find that the particles tend to
preferentially sample positive values of Azz, corresponding
to sinks in the transversal flow, regardless of shape. We
predict that this must also be observed in DNS; it is simply a
consequence of the fact that gravity breaks the symmetry of
the problem. At the same time our calculations show that
spherical particles are more often found in regions where uz
is negative, explaining the behavior found in DNS [11]. But
our calculations also predict that rodlike particles preferen-
tially sample up-welling regions of homogeneous isotropic
flows such as turbulence, provided that they swim fast
enough. Third, we have analytically computed how the
degree of small-scale spatial clustering depends on particle
shape. This is important because small-scale fractal cluster-
ing may enhance particle-encounter rates. We find a tran-
sition that we predict to be observable in DNS as well: when
gyrotaxis is strong (small Ψ) oblong particles cluster less
than spherical ones, while at large Ψ the opposite is true.
Our calculations also show that singularities in the motion

of nearby microorganisms occur, much like “caustics” for
heavy particles in turbulence [35–38]. We predict that such
singularities must also be observed in the DNS of gyrotactic
microswimmers in turbulence. It is of interest to estimate
how often the singularities occur because their effect may
modify the predictions of phenomenological models for
encounter rates [39].

(a) (b)

FIG. 2. (a) Fractal dimension deficit ΔL ≡ d − dL for d ¼ 2,
Ku ¼ 0.1. Numerical simulations of statistical model for
Ψ ¼ 0.1, Λ ¼ 0 (red filled circles), Ψ ¼ 1, Λ ¼ 0 (blue filled
diamonds), Ψ ¼ 0.1, Λ ¼ 1 (light green filled squares), and
Ψ ¼ 1, Λ ¼ 1 (pink filled triangles). Theory [Eqs. (11), (S31),
and (S32)] including the Ku4 contribution to Eq. (S31): solid
lines. Asymptote ∝ ðΦΨÞ2: dashed lines. (b) Numerical simu-
lations, dL for d ¼ 2, Φ ¼ 1, Ku ¼ 1, Λ ¼ 0 (red filled circles),
0.2 (light green filled squares), 0.4 (blue filled diamonds), 0.6
(pink filled triangles), 0.8 (red filled triangles), 1 (dark green
filled stars).
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The analytical results obtained in this Letter were derived
for small Ku (or large Φ). But we have shown that our
analytical results and the corresponding mechanisms quali-
tatively explain what is observed in DNS, and explain also
the results of statistical-model simulations at large values of
Ku. We find fairly good quantitative agreement between
our statistical-model calculations and DNS results for fully
developed turbulence. To achieve even better quantitative
agreement with the DNS would require one to account for
the universal non-Gaussian small-scale fluctuations of fully
developed turbulence [26].
But the fluctuations of the unsteady ocean are neither

fully developed turbulent, nor are they Gaussian. Therefore
the fact that the much simpler Gaussian statistical model
explains the dynamics observed in DNS of fully developed
turbulence [11] shows that the analytical theory (and the
underlying mechanisms) describe robust behavior, that
must be taken into account in the analysis of patchiness
and encounter rates of motile microorganisms in the ocean.
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