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We present practical methods to measure entanglement for quantum simulators that can be realized with
trapped ions, cold atoms, and superconducting qubits. Focusing on long- and short-range Ising-type
Hamiltonians, we introduce schemes that are applicable under realistic experimental conditions including
mixedness due to, e.g., noise or temperature. In particular, we identify a single observable whose
expectation value serves as a lower bound to entanglement and that may be obtained by a simple quantum
circuit. As such circuits are not (yet) available for every platform, we investigate the performance of
routinely measured observables as quantitative entanglement witnesses. Possible applications include
experimental studies of entanglement scaling in critical systems and the reliable benchmarking of quantum
simulators.
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Introduction.—Harnessing the potential ofwell-controlled
experimental platforms, quantum simulators have recently
emerged as analogue devices to study paradigmatic con-
densed-matter models [1]. To date, a considerable variety of
devices have been proposed and partially realized to serve the
central aim in this field: the preparation and control of
quantum states with a number of constituents that is beyond
the reach of classical simulations [2]. For the demonstrationof
genuinely quantum features of these simulators, it is thus of
considerable interest to find methods that quantify entangle-
ment and, if possible, relate the findings to classical simulat-
ability. For pure states, the bipartite block entanglement is a
direct figure of merit for the resources required when
simulatingmany-body systemswith numerical methods such
as the density-matrix renormalization group (DMRG) [3–5].
Oneway to obtain the entanglement contained in a state in the
laboratory would be to perform full quantum state tomogra-
phy [6] and to compute the entanglement of the reconstructed
state. However, this is not only impractical due to the
exponential resources required—the proverbial curse of
dimensionality—but for many reconstruction schemes it
may also lead to a systematic overestimation of the true
entanglement content [7]. An experimentally feasible and
rigorous alternative is to instead rely on lower bounds, which
may be obtained directly from measured observables [8],
and such lower bounds to the entanglement should (i) rely
only on a few observables in order to avoid the curse of
dimensionality, (ii) avoid assumptions on the state in the
laboratory (such as, e.g., symmetries, temperature, or an
underlying Hamiltonian), and (iii) be applicable to the
experimentally relevant setting of mixed states. Indeed, as
has already been demonstrated, (i)–(iii) may be met and
entanglement may be quantified from significantly fewer
observables than are required for the knowledge of the full
state: e.g., collective observables are capable to detect [9–11]
and quantify [12–15] entanglement.

We construct and analyze lower bounds to the bipartite
entanglement of states arising in the quantum simulation of
a variety of spin models such as

Ĥ ¼
XN

i;j¼1

Ji;jσ̂izσ̂
j
z þ B

XN

i¼1

σ̂ix; ð1Þ

which have recently been implemented in experiments
with trapped ions [16–20], superconducting qubits [21],
and ultracold atoms [22,23]. We will consider ground states
and their quasiadiabatic dynamical preparation employing
realistic noise models, including decoherence-induced
mixedness.
Our aim is to quantify bipartite block entanglement of

one part of the chain vs the rest relying only on measure-
ments of certain observables Ĉi. Denoting experimentally
obtained expectation values of these observables by ci [24],
we are thus interested in

Emin½fĈig; fcig� ¼ min
ϱ̂
fEðϱ̂Þjtr½Ĉiϱ̂� ¼ cig; ð2Þ

i.e., we consider the minimal amount of entanglement that
is consistent with the obtained measurements ci. Here, E is
the entanglement measure of choice and the minimization
is taken over all density matrices ϱ̂. As such, we follow the
programme initiated in Refs. [8]. Note that no assumption
on the state in the laboratory enters our considerations.
While we will present tailored lower bounds to Emin that
work particularly well—in some cases even providing Emin
exactly—for certain classes of states, we stress that all
bounds presented in this work are valid for arbitrary states
—pure or mixed.
For systems governed by Hamiltonians as in Eq. (1), we

identify a single key quantity in order to obtain lower
bounds on Emin. That is, it turns out that a single observable
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Ĉ constitutes a common quantitative witness and, in fact,
for large classes of states determines not only a lower
bound but the entanglement of ϱ̂ itself. We show how this
witness may be measured directly by employing a simple
quantum circuit. If such a circuit is available, entanglement
may thus be quantified for systems consisting of an
arbitrary number of spins. If it is not available, the above
observation still allows us to (i) transform the numerical
minimization in Eq. (2) into the problem of computing the
smallest eigenvalue of a sparse matrix and thus obtain
results for more than 20 spins (and in principle many more
using DMRG methods [5]) and (ii) analytically derive
quantitative witnesses that are simple to measure for an
arbitrary number of spins, thus avoiding optimization
altogether. With recent implementations of models as in
Eq. (1) in mind, we thus introduce schemes for practical
and rigorous experimental entanglement estimation using
only a few readily available observables and without
relying on any assumptions on the state in the laboratory.
Throughout, we will use the logarithmic negativity [25]

as our bipartite entanglement measure and consider the
bipartition f1;…; ðN=2ÞgjfðN=2Þ þ 1;…; Ng, assuming
N to be even. The logarithmic negativity is a full entangle-
ment monotone for mixed states [26] and reduces to the
Rényi entanglement entropy with Rényi index 1=2 on pure
states.
Preliminaries.—We start by introducing the relevant

quantities. The logarithmic negativity is defined as

El:n:ðϱ̂Þ ¼ log ∥ϱ̂Γ∥1; ð3Þ

where ϱ̂Γ is the partial transpose of ϱ̂ with respect to the
chosen bipartition and ∥X̂∥1 ¼ maxftrðĈ X̂Þj − 1 ≤ Ĉ ≤
1g is the trace norm. By its variational form we have
that any observable with −1 ≤ ĈΓ ≤ 1 fulfils El:n:ðϱ̂Þ ≥
loghĈiϱ̂. Any such observable Ĉ thus serves as a quanti-
tative entanglement witness as it not only witnesses
entanglement but indeed provides a lower bound. As an
important example for such a quantitative witness
consider the unnormalized maximally entangled state

jΦi ¼ 2N=4 ⊗
N=2

i¼1
jϕii;Nþ1−i, where jϕii;j ¼ ðj00i þ j11iÞ=

ffiffiffi
2

p
, which fulfils −1 ≤ ðÛjΦihΦjÛ†ÞΓ ≤ 1 for any unitary

Û ¼ V̂ ⊗ Ŵ. Hence, for any state ϱ̂

El:n:ðϱ̂Þ ≥ log max
Û¼V̂⊗Ŵ

hÛjΦihΦjÛ†iϱ̂: ð4Þ

The significance of the quantitative witness ÛjΦihΦjÛ†

becomes clear when considering pure states: for a
given pure state, consider its Schmidt decomposition
jψi ¼ P

sψ sjasijbsi and let Û ¼ V̂ ⊗ Ŵ be the unitary
that takes jΦi to

P
sjasijbsi. Then hψ jÛjΦi ¼

∥ðjψihψ jÞΓ∥1=21 and thus Eq. (4) becomes an equality.

While in general this requires the knowledge of the
Schmidt vectors, we will see below that for large classes of
states, equality may be achieved for one particularly simple
unitary. This fact may be used to greatly simplify the
optimization in Eq. (2). Furthermore, for these classes of
states, hÛjΦihΦjÛ†iϱ̂ may be obtained directly by applying
a simple quantum circuit as in Fig. 1(b) consisting of
mutually commuting N=2 two-qubit controlled-NOT
(CNOT) and N=2 single-qubit gates and subsequently
performing a projective measurement of j0ih0j⊗N in the
computational basis.
Results.—The Ising model in Eq. (1) has been realized on

a variety of experimental platforms: systems with tunable
interactions are, for example, found in devices based on
superconducting qubits [21]. Short-ranged couplings are
encountered in experiments with ultracold atoms in optical
lattices, see, e.g., Ref. [22], in which nearest-neighbor
interactions have been simulated. For ion traps, the imple-
mentation of Eq. (1) has been proposed theoretically [42]
and realized experimentally [16–18]. Details about Ji;j are

(a)

(b) (c)

FIG. 1. (a) Expectations of jΦihΦj for the ground state of
the ferromagnetic (left), and of jΦ0ihΦ0j for the ground state of
the antiferromagnetic (right), long-range Ising Hamiltonian in
Eq. (1) for realistic couplings [27] with N ¼ 20 and B in units of
J0 ¼

P
ijJi;iþ1j=ðN − 1Þ. The coupling range is determined by

the detuning parameter μ. (b) The expectations may be
obtained via the circuit in Eq. (7) and they coincide with the
entanglement in the ground state, see Corollary 1 in Ref. [27].
(c) Lower bounds to the entanglement of ground states of the
Hamiltonian in Eq. (1) with N ¼ 16, μ ¼ 117.6 kHz, and
realistic couplings [27]. The black line shows the exact
logarithmic negativity of the ground state. Entanglement
bounds are obtained by optimizing the quantitative witness in
Eq. (8) over w1. The couplings in the witness are as in the
Hamiltonian but randomly perturbed by 2% to mimic
imprecise knowledge; shown are several random trials as density

plots with the optional operator ⊗
N

i¼1
σ̂ix in blue and without

it in cyan.
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given in Ref. [27]. Often they are well approximated by an
algebraic decay

Ji;j ¼
J

ji − jjp ; 0 < p < 3: ð5Þ

Our main result is that for ground states jψi of a variety
of spin Hamiltonians the maximizing unitary in Eq. (4) may
be given explicitly and it achieves equality [27]:

El:n:ðjψihψ jÞ ¼ log tr½ÛjΦihΦjÛ†jψihψ j�: ð6Þ

We prove in Ref. [27] that this holds for couplings as in
Eq. (5), for all given numerical examples (see Sec. I of
Ref. [27]), and more general models. Crucially, Û does not
depend on the details of the model. Hence, the bipartite
entanglement (between the left and right half of the chain as
quantified in terms of the logarithmic negativity) of any
state that is a nondegenerate ground state of a Hamiltonian
as in Eq. (1) with couplings fulfilling the hypotheses given
in Ref. [27] is equal to the expectation value of a simple
(unnormalized) projector. What is more, this expectation
value serves as a lower bound to the entanglement of any
state (pure or mixed). One possibility to obtain this
expectation value—so the overlap of the state in the
laboratory with jΦi—is to apply a simple circuit
and subsequently measure the projector j0ih0j⊗N : for the
ferromagnetic case (J < 0) we write jΦi ¼ R̂†j0i⊗N , where

R̂ ¼ ⊗
N=2

i¼1
ĤiĈi;Nþ1−i ð7Þ

and Ĉi;j denotes the CNOT gate acting on spin i (control)
and j (target) and Ĥi, the Hadamard gate acting
on spin i. The antiferromagnetic case (J > 0) follows by

additionally applying the transformation ⊗
N=2

i¼1
σ̂ix before the

measurement. Note that, e.g., in ion-trap experiments,
spin polarization measurements along a particular axis
are routinely performed by spin-dependent resonance
fluorescence.
The logarithmic negativity of any state may thus be

lower bounded by applying the circuit R̂, which is depicted
in Fig. 1(b). There, we also show numerical results for the
thus obtained entanglement of the ground state of the Ising
model in Eq. (1) for realistic [27] ferro- and antiferromag-
netic couplings; cf. the phase diagram from the entangle-
ment entropy in Ref. [43].
Although experimentally feasible (see, e.g., Ref. [44] for

the realization of a CNOT gate in ion traps and Ref. [45] for
superconducting qubits), other observables may be more
accessible than the implementation of the circuit R̂. To this
end, we give lower bounds to Eq. (2) in terms of arbitrary
observables Ĉi. Combining Eqs. (2) and (4), we find that
Emin½fĈig; fcig� is lower bounded by the logarithm of

hŴiϱ̂ ¼
P

iwici for any operator Ŵ≔
P

iwiĈi fulfilling
Ŵ ≤ jΦihΦj. In particular, an optimal bound may be
obtained by optimizing over the wi using a semidefinite
program (SDP) [27]. Note that the observables Ĉi are
entirely arbitrary and this scheme thus may accommodate
measurements of any experimental platform.
Motivated by the fact that if the ground state is separated

from the first excited state by an energy gap, the
Hamiltonian itself provides an entanglement witness
[46], we consider witnesses of the form

Ŵ ¼ w01þ ⊗
N

i¼1
σ̂ix þ w1Ĥ; ð8Þ

where we included the [optional, see Fig. 1(c)] operator

⊗
N

i¼1
σ̂ix to account for the small gap in the symmetry-broken

phase. This further simplifies the optimization over the
variables fwig as now we are considering only one
observable—namely Ŵ—and the number of optimization
variables is reduced to 1. Note that for Ĥ as in Eq. (1), the
witness Ŵ consists of at most quadratically many two-body
observables and hence its expectation value may in this
sense be obtained efficiently: the experimental effort is
reduced to obtaining the expectation value of the magneti-
zation

P
iσ̂

i
x and all pairs σ̂izσ̂

j
z for which Ji;j is nonzero. In

ion-trap and superconducting-qubit experiments such
observables are routinely measured. For nearest-neighbor
couplings as in, e.g., the ultracold atoms experiment in
Ref. [22], this amounts to only linearly many observables;
the correlators σ̂izσ̂

iþ1
z may be obtained directly under a

quantum-gas microscope [22], and the magnetization by a
Fourier transformation of the time-of-flight distribution.
For the couplings one could either choose a theoretical
prediction (for ion traps given in Sec. I of Ref. [27]) or, if
possible, measure them experimentally (see the methods
used in Ref. [19] for ion traps). Then the SDP may be
avoided completely by choosing w0 as the smallest eigen-

value of jΦihΦj − ⊗
N

i¼1
σ̂ix − w1Ĥ as then the constraint Ŵ ≤

jΦihΦj is automatically fulfilled. As this operator is a sparse
matrix, standard eigenvalue solvers allow for system sizes
of more than 20 qubits. In fact, since jΦihΦj possesses a
representation as a matrix product operator of bond
dimension 4, DMRG algorithms may be used to obtain
the smallest eigenvalue for much larger systems. In
Fig. 1(c) we show numerical results for the above pro-
cedure. Again, we do not put any assumptions on the state
in the laboratory—the expectation hŴiϱ̂ is a lower bound to
the entanglement of any state ϱ̂ but, of course, we know that
the bound will work particularly well for ground states of
Hamiltonians as in Eq. (1) with couplings as in Eq. (5) or as
in Sec. I of Ref. [27] with parameters as for all the
numerical examples considered here. Finally, we use the
condition Ŵ ≤ jΦihΦj to determine a witness Ŵ (see
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Ref. [27] for details) in terms of observables that are readily
measurable with trapped ions. Notably, Ŵ allows for lower
bounds for ground states of Hamiltonians as in Eq. (1)
independent of the magnetic field, see Fig. 2. With this
quantitative witness one is hence in the position of directly
giving lower bounds by obtaining expectation values of
simple operators and neither the implementation of a circuit
nor optimization is necessary, which allows for the appli-
cation to an arbitrary number of spins.
Quasiadiabatic preparation and benchmarking.—In

nonequilibrium situations, quantum simulators of one-
dimensional spin systems may outperform classical com-
puters already for a moderate size of spins: as opposed to
states in equilibrium, which typically have little entangle-
ment (cf. the area laws for ground and thermal states
[3,50]), the entanglement generated in nonequilibrium
situations may become large [51]. Arguably the best
numerical algorithms for the simulation of one-dimensional
(non)equilibrium quantum many-body systems are those
based on matrix product states and matrix product operators

(MPOs) [5,52]. The resources required to treat such states
numerically are directly related to their so-called bond
dimension. For pure states, i.e., matrix product states, there
is an intimate relation between the bond dimension and the
entanglement content as quantified in terms of Rényi
entanglement entropies [4]. For mixed states, i.e., MPOs,
this connection is far less clear. Indeed, a MPO may have a
small bond dimension while at the same time have a large
block entropy—the product operator ð1=2Þ⊗N being the
most striking example. In this sense, using pure-state
entanglement measures (such as Rényi entanglement entro-
pies) as benchmarks may lead to false conclusions because
in experiments mixedness is unavoidable. We illustrate
these relations by considering the quasiadiabatic prepara-
tion of ground states of Ising Hamiltonians as commonly
performed in ion-trap experiments [18,27]. Numerical
results are summarized in Fig. 2. The main conclusions
are that the block entropy Sðtr1;…;N=2½ϱ̂ðtÞ�Þ (a measure of
entanglement if the state was pure) increases with time for
all noise strengths while the true entanglement reaches a
maximum after which it decreases in time. From the block
entropy one would thus falsely conclude that the state
becomes harder and harder to simulate while the error when
approximating ϱ̂ðtÞ by a MPO ϱ̂D with bond dimension D

ϵDðtÞ ¼ min
ϱ̂D

∥ϱ̂ðtÞ − ϱ̂D∥F ð9Þ

reaches a maximum and then decreases in time [49] as does
the entanglement. The exact mathematical connection
between approximability by MPOs, entanglement, and
other quantities such as, e.g., mutual information, remains
an open question however.
Summary and outlook.—In the setting of quantum

simulations of the transverse-field Ising model, we have
introduced methods to estimate bipartite block entangle-
ment without putting any assumptions on the state in the
laboratory. The principles presented here are applicable to,
e.g., ion-trap, cold-gas, and superconducting-qubit imple-
mentations and we have focused on the ion-trap platform
for specific examples. A lower bound to the entanglement
is given by the overlap with a certain state, which may, e.g.,
be obtained by a simple quantum circuit and, for large
classes of states, actually gives the entanglement exactly
instead of just bounding it. As obtaining this overlap may,
depending on the platform, may represent a considerable
experimental challenge, we further investigated the perfor-
mance of routinely performed measurements as a means to
estimate the entanglement. As we consider the benchmark-
ing of quantum simulators as one possible application,
we have compared the matrix-product-operator bond
dimension, block entanglement, and block entropy for a
quasiadiabatic protocol preparing ground states of the
transverse-field Ising model.

(a)

(b)

(c)

(d)

FIG. 2. Quasiadiabatic ramping of the magnetic field across the
phase transition including spontaneous emission and dephasing
simulated using a Lindblad model [27] for N ¼ 8 spins, leading
to a relatively long-ranged interaction ∼ji − jj−0.3. (a),(c) Shown
are the block entropy Sðtr1;…;N=2½ϱ̂ðtÞ�Þ (an entanglement measure
if the state was pure) in red, the exact bipartite entanglement of
the simulated state ϱ̂ðtÞ in black, and the lower bounds as
obtained by the circuit R̂ (blue crosses), by the witness [Eq. (S35)]
in Ref. [27] (green triangles), by the SDP [27] with observables
σ̂iα, σ̂iασ̂

j
α, i; j ¼ 1;…; N, α ¼ x, y, z, and σ̂1x � � � σ̂Nx as input

(orange circles), and by optimizing the quantitative witness in
Eq. (8) over w1 and B (yellow squares). See Ref. [27] for a
detailed noise analysis. (b),(d) Shown in gray are upper and lower
bounds [49] to the MPO approximation error in Eq. (9) (D ¼ 1, 2,
3, 4; top to bottom). Note the monotonicity of the block entropy
as opposed to the behavior of the approximation error and the
entanglement as quantified in terms of the logarithmic negativity.
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