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The recent realization that Sweet-Parker current sheets are violently unstable to the secondary tearing
(plasmoid) instability implies that such current sheets cannot occur in real systems. This suggests that, in order
to understand the onset ofmagnetic reconnection, one needs to consider the growth of the tearing instability in
a current layer as it is being formed. Such an analysis is performed here in the context of nonlinear resistive
magnetohydrodynamics for a generic time-dependent equilibrium representing a gradually forming current
sheet. It is shown that two onset regimes, single-island andmulti-island, are possible, depending on the rate of
current sheet formation. A simple model is used to compute the criterion for transition between these two
regimes, as well as the reconnection onset time and the current sheet parameters at that moment. For typical
solar corona parameters, this model yields results consistent with observations.

DOI: 10.1103/PhysRevLett.116.105003

Introduction.—Magnetic reconnection is a basic plasma
process responsible for solar flares, magnetospheric sub-
storms, and tokamak disruptions [1–3]. While reconnection
itself has been intensely studied, reconnection onset—the
transition from a slow quiescent stage of magnetic energy
accumulation to an explosive energy release—is much less
understood and remains one of the most mysterious aspects
of this fascinating phenomenon [4–9].
Reconnection is associated with quasi-two-dimensional

intense electric current sheets (CSs) that can form in a
plasma. Although several special cases of CS formation
have been investigated [10–20], a solid, general under-
standing of CS formation is still lacking. Consequently,
most numerical studies of reconnection are initialized with
a fully developed CS, e.g., a resistive Sweet-Parker (SP)
layer [21,22]. However, the recent realization that long
SP-like CSs are super-Alfvénically unstable implies that, in
reality, they can never form in the first place [23–29]. This
is also true for collisionless systems [30]. Thus, reconnec-
tion onset needs to be investigated in the context of a
gradual CS formation process, and addressing this impor-
tant problem is the main goal of this Letter.
Problem setup.—We consider a CS whose key param-

eters (thickness a, length L, and the reversing magnetic
field B0) are slowly evolving on some time scale τdr, with
the aspect ratio L=a increasing. With time, the system
becomes unstable to multiple tearing modes, each charac-
terized by a wave number kðtÞ, the number of islands
N ∼ kL, and an amplitude (island width) wNðtÞ. Our goal is
to analyze both the linear and nonlinear evolution of these
modes in a forming CS, and to identify the first mode that
exceeds the CS width a, thus effectively disrupting the
forming CS and marking the transition from the slow
energy buildup stage to reconnection onset [31].

Whereas here we present only a resistive magnetohy-
drodynamics (MHD) analysis, the underlying conceptual
framework should also be valid for weakly collisional
plasmas. Also, we ignore the effects of background sheared
flows (e.g., associated with CS formation) on tearing
evolution [36], which we have found to be justified for
sub-Alfvénic flows [37].
Linear stage.—Tearing modes are linearly unstable if the

instability parameter Δ0ðkÞ > 0 [38]. For definiteness, con-
sider a Harris-type magnetic equilibrium [39], for which
Δ0a ¼ 2ð1=ka − kaÞ, and focus on long wavelength modes,
ka ≪ 1, so that Δ0a ∼ 1=ka. There are two possible linear
regimes: (1) Δ0δin ≪ 1 (“FKR” [38]); and (2) Δ0δin ∼ 1

(“Coppi” [40]). Here δin ¼ ½γðkVAÞ−2a2η�1=4 is the inner
resistive layer width, γ is the growth rate, VA is the Alfvén
speed, and η is magnetic diffusivity. In the FKR case,
γFKR ≃ Δ04=5k2=5V2=5

A a−2=5η3=5 ∝ k−2=5, and so the fastest
growing FKR mode is the longest that fits in the CS,
N ∼ kL ∼ 1, corresponding to γFKRmax ≃ L2=5V2=5

A a−2η3=5 ¼
τ−1A S−3=5a ðL=aÞ2=5, where Sa ≡ aVA=η ≫ 1 and τA ≡ a=VA.
In the Coppi case, γCoppi ≃ k2=3V2=3

A a−2=3η1=3 ¼
τ−1A S−1=3a N2=3ðL=aÞ−2=3 ∝ k2=3. The fact that the FKR
and Coppi scalings of γ with k have different signs implies
that the overall fastest mode is found by balancing the two
expressions for γ. This “transitional” or “fastest Coppi”
mode has kCoppimax a ∼ S−1=4a and γCoppimax ∼ τ−1A S−1=2a . Modes
with k > kCoppimax are in the FKR regime, while those with
k < kCoppimax are in the Coppi regime; in a given CS, Coppi
modes exist only if the kCoppimax mode fits inside
it, kCoppimax L > 1.
As the sheet’s aspect ratioL=a increases over time, higher

and higher-N modes become progressively destabilized.
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Thus, many tearing modes may independently undergo
linear evolution; their amplitudes during the linear stage
are smaller than a, so they do not yet affect CS formation or
each other. For any given modeN we identify two important
moments, marking transitions between different stages in the
mode’s life: the time tcrðNÞ marking the end of the linear
stage, and the time ttrðNÞ for the mode’s transition from the
FKR to the Coppi regime. The life path of the mode then
depends on the relative ordering of tcrðNÞ and ttrðNÞ. We
define these two times as follows.
First, both for FKR modes (for any given N) and for the

fastest Coppi mode [NðtÞ ¼ NCoppi
max ≡ kCoppimax ðtÞLðtÞ], the

linear growth rate γðN; tÞ increases with time as the CS
develops (L=a grows). At some critical time tcrðNÞ, γðN; tÞ
overcomes driving, γðN; tcrÞ≳ τ−1dr . After tcrðNÞ is reached
and until the end of the linear stage, the mode’s growth
effectively proceeds on a frozen background and so,
ignoring logarithmic corrections, tcrðNÞ marks the end of
the mode’s linear stage.
Second, whereas each mode N always starts out in the

FKR regime (NCoppi
max ðtÞ < N), as the CS forms and hence

both L=a and NCoppi
max ∼ ðL=aÞS−1=4a increase, there may

come a time ttrðNÞ when NCoppi
max ½ttrðNÞ� ¼ N. At this point,

if the mode is still in the linear regime, i.e., if
ttrðNÞ < tcrðNÞ, the mode transitions to the Coppi regime.
Importantly, higher N corresponds to higher ttrðNÞ.
Our main goal in the linear evolution analysis is to find

which mode has the earliest tcrðNÞ and hence reaches the
end of its linear stage first. At early times, the fastest-
growing mode is always the N ¼ 1 (kL ∼ 1) FKR mode
but, in principle, this may change over time. If tcrð1Þ≡
tcrðN ¼ 1Þ < ttrð1Þ (we call this case the “FKR scenario”),
then the N ¼ 1 mode remains in the FKR regime through-
out its linear evolution. Furthermore, since ttrðNÞ increases
with N, ttrðNÞ > tcrð1Þ, and so all the higher-N modes also
remain in the FKR regime throughout this time and thus
grow slower than the N ¼ 1 mode. Thus, the N ¼ 1 FKR
mode reaches its tcr first and thus “wins” the linear stage.
If, however, tcrð1Þ > ttrð1Þ, and so L=a > S1=4a before

tcrð1Þ is reached, then the N ¼ 1 mode transitions to
the Coppi regime. After that, the fastest growing linear
mode at any given time is the transitional modeNCoppi

max ðtÞ ¼
ðL=aÞS−1=4a > 1. Then, the mode that actually wins the
linear stage is the one with ttrðNÞ ¼ tcrðNÞ, i.e., the mode
that reaches its tcr immediately upon transitioning to the
Coppi regime and hence becoming fastest-growing—
before it is overtaken by another Coppi mode.
At the end of the linear stage, the amplitude of any mode

is wNðtcrÞ ∼ δinðkÞ ≪ aðtcrÞ, and thus, to determine when
the CS is disrupted (w ∼ a) and by which mode, we now
need to consider the nonlinear evolution.
Nonlinear stage.—The nonlinear evolution of a given

mode N is governed by the product Δ0ðkNÞwN . If it is small
at the nonlinear phase onset, t ¼ tcrðNÞ, then the mode

enters the algebraic-growth Rutherford stage [41] [42],
_wN ≃ ηΔ0ðkN; tÞ. This is the case for modes that are in the
FKR regime at tcrðNÞ. Indeed, the condition forΔ0ðNÞwN ∼
δinΔ0 ≃ ½L=aN�8=5S−2=5a at t ¼ tcrðNÞ to be small is equiv-
alent to the condition, LðtcrÞ=aðtcrÞ < NS1=4a , for them to be
in the FKR regime in the first place. Thus, these modes
have a well-defined nonlinear Rutherford stage that lasts
until wN ∼ 1=Δ0.
However, as both the island width wN and the CS aspect

ratio grow,Δ0wN ∼ ðwN=aÞðL=NaÞ also grows. Eventually,
at some t ¼ tXðNÞ, the mode reaches the critical amplitude
wX;N ∼ 1=Δ0ðkNÞ for undergoing X-point collapse
[15,20,44]. The Rutherford stage then ends, the inter-island
X points rapidly collapse to thin secondary current sheets,
and the mode’s growth greatly accelerates [20]. Since
wX;N ∼ ½Δ0ðkNÞ�−1 ∼ kNa2 ≪ a, the dominant tearing mode
has to undergo X-point collapse before it can disrupt the
sheet (wdisrupt;N ¼ a). However, because of the rapid,
exponential postcollapse growth, the delay between these
two events is short, and so the first mode to reach X-point
collapse remains dominant throughout the subsequent
postcollapse evolution and thus becomes the one that
disrupts the CS. Our goal is to identify this dominant
mode and determine its collapse time, tX;N , which then
gives a good estimate for the CS disruption time, tdisrupt.
First, consider the case tcrð1Þ < ttrð1Þ, when the first

mode to end its linear stage is the FKR N ¼ 1 mode. Then,
a comparison of the N-dependencies of tcrðNÞ and ttrðNÞ
shows that tcrðNÞ < ttrðNÞ also for all other modes and thus
they all remain in the FKR regime throughout linear
evolution and then transition to the Rutherford stage.
There are no Coppi modes in this case.
Furthermore, from the Rutherford growth equation,

_wN ≃ ηΔ0ðkNÞ ∼ k−1 ∼ N−1, and so lower-N modes grow
faster than higher-N modes during this stage, implying that
the N ¼ 1 mode will reach X-point collapse first. More
rigorously, integrating _wN ≃ ηΔ0ðkNÞ yields

wNðtÞ ¼ wNðtcrÞ þ
2η

N

Z
t

tcr

Lðt0Þ
a2ðt0Þ dt

0; ð1Þ

where wNðtcrÞ ∼ δin ≪ aðtcrÞ.
For simplicity, let us first assume that a decreases

with time, _a < 0 (L and B0 may also be changing); we
can then parameterize the CS evolution by a instead of t.
Equation (1) then yields

wNðaÞ ∼
η

N

Z
a

a½tcrðNÞ�

LðaÞ
a2

t0ðaÞda; ð2Þ

where t0ðaÞ≡ dtðaÞ=da < 0 and where we have ignored
wNðtcrÞ and factors of 2. Then, the value a ¼ aX;N at which
wNðaÞΔ0 ∼ 1, is implicitly given by

N ¼ η
LðaX;NÞ
a2X;N

Z
aX;N

a½tcrðNÞ�

LðaÞ
a2

t0ðaÞda: ð3Þ
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Since the nonlinear Rutherford stage is generally much
longer than the linear one (because the Rutherford growth
is algebraic in time, whereas linear-stage growth is expo-
nential), we can neglect the lower bound in this integral.
Then, since t0ðaÞ < 0, we see that the integral on the right-
hand side (RHS), and thus the entire RHS, decreases with
aX;N . Correspondingly, smaller-N Rutherford modes have
larger aX;N and thus reach the X-point collapse sooner.
Moreover, one can show that this is also true for a CS that
forms not by thinning ( _a < 0), but instead by stretching
( _L > 0) of the layer at a fixed thickness a0, as is the case for
channel flows driven by the magnetorotational instability
[45,46] in accretion disks.
To sum up, the nonlinear Rutherford evolution of FKR-

type modes does not change the result of the linear analysis:
if the most unstable linear mode was in the FKR regime
(N ¼ 1 FKR mode), then this mode will continue to
dominate during the Rutherford stage and will reach
X-point collapse first. Ultimately, this is the mode that
disrupts the sheet.
Now we consider the nonlinear evolution for the second

case, tcrð1Þ > ttrð1Þ, when the first mode to reach the end of
the linear stage is the fastest Coppi mode N ¼ NCoppi

max . One
can show that δinΔ0 ∼ 1 at t ¼ tcr for this mode, and hence
the Rutherford regime is essentially absent and X-point
collapse occurs promptly, soon upon the mode’s arrival at
the nonlinear stage. Correspondingly, this mode is the first
to undergo X-point collapse and to ultimately disrupt the
CS; the disruption time is then comparable to the time spent
in the linear regime, tCoppidisrupt ∼ tcrðNCoppi

max Þ.
The main general conclusion from these considerations

is that the outcome of the nonlinear evolution of both FKR
or Rutherford and Coppi modes in a gradually forming CS
is the same as in the linear stage: the first mode to reach the
end of its linear stage (γτdr ¼ 1) will also be the first to
undergo X-point collapse (wΔ0 ∼ 1) and subsequently will
disrupt the CS (w ¼ a).
The above formalism is general and can be applied to any

CS formation process if the functional forms for the time
evolution of the sheet parameters are known. A simple but
general example is analyzed next.
Example: Chapman-Kendall-like current sheet

formation.—Consider an X-point configuration given by
ϕ ¼ vdrxy=LðtÞ, ψ ¼ B0=2½x2=aðtÞ − y2=LðtÞ�, where ϕ
is the (incompressible) flow stream function, ψ is the
magnetic flux, B0 ¼ const, and vdr ¼ const is the plasma
velocity driving the CS formation (cf. Ref. [10]; Ref. [47]).
Substituting these expressions into the ideal reduced-MHD
equations [48], one obtains

aðtÞ ¼ a0L0=ðL0 þ 2vdrtÞ; LðtÞ ¼ L0 þ 2vdrt; ð4Þ

where a0 ≡ að0Þ, L0 ≡ Lð0Þ. The CS formation driving
time scale then becomes τdr ¼ L=vdr ∼ t for t ≫ L0=vdr.

The two main dimensionless parameters of the system are
the Alfvén Mach number (quantifying the ideal-MHD CS
formation drive), Mdr ≡ vdr=VA, assumed to be ≤ 1, and
the initial Lundquist number S0 ≡ ða0L0Þ1=2VA=η ≫ 1.
Focusing on late times, 2vdrt ≫ L0 (and hence L ≫ a),

we see that the tearing instability parameter is
Δ0ðtÞ ¼ ð16=NÞ½v3dr=ða20L2

0Þ�t3. The transition from the
FKR to the Coppi regime for the N ¼ 1 mode occurs
when ðL=aÞS−1=4a ∼ 1, i.e., ttrð1Þ=τA0 ∼M−1

dr S
1=9
0 , where

τA0 ≡ ða0L0Þ1=2=VA. The critical time for the N ¼ 1

FKR mode, γFKRmax LðtcrÞ=vdr ∼ 1, is tFKRcr ð1Þ=τA0 ∼
M−12=17

dr S3=170 [49]. The condition tFKRcr ð1Þ < ttrð1Þ for the
fastest growing linear (N ¼ 1) mode to be in the FKR
regime at this time yields a condition on the drive:

Mdr < Mdr;c ≡ S−2=90 : ð5Þ
If this is not satisfied, then the N ¼ 1 mode and several
higher-N modes transition to the Coppi regime while still in
the linear stage. The fastest growing mode number then
increases with time as NCoppi

max ∼ ðL=aÞS−1=4a . As argued
above, the mode that “wins” the linear stage is the mode
with ttr ≃ tcr. For the CS formation model yielded by
Eq. (4), this dominant Coppi mode is

NCoppi
max ∼ ½L=aS−1=4a �t¼tCoppicr

∼M9=10
dr S1=50 ; ð6Þ

and its critical time and CS dimensions at that time are

tCoppicr ≃ ttrðNCoppi
max Þ ∼M−3=5

dr S1=50 τA0; ð7Þ

aCoppicr =ða0L0Þ1=2 ∼M−2=5
dr S−1=50 ; ð8Þ

LCoppi
cr =ða0L0Þ1=2 ∼M2=5

dr S1=50 ; ð9Þ

and hence ðL=aÞCoppicr ≡ ðL=aÞjtCoppicr
∼M4=5

dr S2=50 . As a con-

sistency check, we see that ttrð1Þ ≪ tCoppicr if Mdr ≫ S−2=90 ,
which is required for the dominant mode to be in the Coppi
regime by the end of the linear stage in the first place. Also,
it is instructive to note that ðL=aÞCoppicr ∼ ½SLðtCoppicr Þ�1=3M2=3

dr
[where SLðtÞ≡ LðtÞVA=η], which generalizes the scaling
obtained in Ref. [28] for Mdr ¼ 1.
In the nonlinear phase, if the condition Eq. (5) is satisfied,

the N ¼ 1 mode continues to dominate and undergoes
Rutherford evolution described by _w1 ≃ ηΔ0ðN ¼ 1Þ, yield-
ing w1ðtÞ≃ w1ðtFKRcr Þ þ 4ηv3drðt4 − ½tFKRcr �4Þ=ða20L2

0Þ, where
w1ðtFKRcr Þ≃ δFKRin is the island width at the start of the
Rutherford stage. The Rutherford stage continues until
X-point collapse and it can be checked a posteriori that, if
Eq. (5) is satisfied, then the Rutherford stage lasts much
longer than tFKRcr ð1Þ. One can then also show that the critical
island width triggering X-point collapse, wX;1, is much
greater than w1ðtFKRcr Þ. Thus, the growth of the N ¼ 1
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FKR mode throughout most of the Rutherford stage is
described by (ignoring factors of order unity):

w1ðtÞ ∼ η
v3dr
a20L

2
0

t4: ð10Þ

Then, the time for this mode to reach the collapse size
wX;1 ¼ ½Δ0

1ðtX;1Þ�−1 is

tX;1 ∼ τA0M
−6=7
dr S1=70 ≫ tFKRcr ; ð11Þ

the critical island width is wX;1 ∼ ða0L0Þ1=2S−3=70 M−3=7
dr ,

and the corresponding CS parameters are

aX;1=ða0L0Þ1=2 ∼M−1=7
dr S−1=70 ; ð12Þ

LX;1=ða0L0Þ1=2 ∼M1=7
dr S1=70 ; ð13Þ

½L=a�X;1 ∼M2=7
dr S2=70 : ð14Þ

As we have argued, the mode’s growth accelerates rapidly
after the collapse [20] and so tFKRdisrupt ∼ tX;1; thus, the above
expressions yield good practical estimates for the final
parameters at the moment of disruption w ¼ a.
If, on the other hand, Eq. (5) is not satisfied, then both

linear and nonlinear stages are dominated by the Coppi
mode with NCoppi

max given by Eq. (6). This mode undergoes
X-point collapse and then quickly leads to CS disrup-
tion essentially as soon as it becomes nonlinear, i.e.,
tCoppidisrupt ≃ tCoppiX ∼ tCoppicr . Consequently, the CS thickness

aCoppiX and length LCoppi
X at disruption are well approximated

by their values Eqs. (8)–(9) at tCoppicr .
It is worth noting that both Eqs. (12)–(14) and Eqs. (8)–(9)

scale only weakly with the two key input parameters
Mdr and S0, pointing to a certain universality of the
FKR/Rutherford and the Coppi evolution scenarios: in each
of these regimes one will find reasonably similar estimates
for a wide range of Mdr and S0.
Also note that in both the FKR and Coppi cases aX is

much larger than the corresponding SP CS thickness
δSP ∼ LXS

−1=2
X , where SX ≡ LXVA=η is the Lundquist

number at the time of X-point collapse. The ensuing CS
disruption implies, therefore, that a global-scale SP layer is
never formed, as we anticipated.
As an application, let us consider typical parameters

for solar flares: a0 ¼ L0 ¼ 104 km, ne ¼ 1010 cm−3, B0 ¼
100 G, resulting in VA ≃ 2000 km=s, τA0 ≃ 5 s, and
S0 ≈ 3 × 1013. Equation (5) yields roughly Mdr;c ≈ 0.001,
corresponding to vdr;c ≃ 2 km=s, comparable to typical
photospheric velocities. Since in the real corona a broad
range of drives is likely to be present, let us contemplate both
the FKR and Coppi cases by considering Mdr ¼ Mdr;c ¼
10−3 (FKR, N ∼ 1) and Mdr ¼ 0.05 (Coppi; in this case

vdr ≈ 100 km=s, as may arise due to ideal-MHD instabilities
or a loss of equilibrium driving a coronal mass ejection). We
obtain (i)Mdr¼10−3→aFKRdisrupt≈300km,LFKR

disrupt≈3×105km,

tFKRdisrupt ≈ 40h, and (ii)Mdr¼0.05→aCoppidisrupt≈70km, LCoppi
disrupt ≈

1.5 × 106 km, tCoppidisrupt ≈ 4 hours, and N ≈ 30. These are
reasonable numbers (see, e.g., Refs. [9,50–52]), especially
in light of the crudeness of the CS formation model
considered here. In particular, both tFKRdisrupt and tCoppidisrupt are
consistent with observed preflare energy-buildup times. In
addition, note that in both cases, the smallest meaningful
length scale in our problem, δinðtcrÞ ∼ 100–300 m, remains
much larger than the ion kinetic scales: the skin depth,
c=ωpi ≈ 2 m, and the Larmor radius, ρi ≈ 0.1 m. This
validates our usage of the resistive MHD description for
reconnection onset in the solar corona in this example.
Conclusions.—In this study we have developed a general

conceptual framework connecting two important and
related phenomena that have hitherto been considered
separately: large-scale ideal-MHD processes leading to
thin current sheet formation and magnetic energy accumu-
lation, and the onset of fast energy release through
reconnection. In our picture, the immediate outcome of
this sequence of events is the disruption (and thus replace-
ment) of the forming current sheet by a chain of primary
magnetic islands generated by the tearing instability. Our
study is substantially different from, and more fundamental
than, previous related work on the tearing instability of
reconnecting current sheets [28,36], which has focused
exclusively on the linear evolution of a time-independent
current sheet and has not considered if and how the FKR
regime transitions into the Coppi regime. In contrast, we
have considered a time-evolving current sheet at an
arbitrary formation rate, computed the pertinent time scales
related to various tearing modes, and analyzed the order in
which these various processes happen during both the
linear and nonlinear evolution. Our analysis has allowed us
to predict for the first time the moment at which the current
sheet is disrupted (the reconnection onset), the number of
primary magnetic islands that disrupt it, and the final
current sheet properties at the time of disruption, and
elucidate their dependence on the Lundquist number and
the current-sheet formation rate. In particular, our analysis
has revealed that two distinct regimes are possible: the
FKR/Rutherford regime, in which the sheet is disrupted by
only one or two islands; and the Coppi regime, where,
instead, it is disrupted by a large number of islands. Both
scenarios are relevant to experimental, astrophysical, and
space systems, including solar flares, where they yield
reasonable estimates for flare onset [9].
Although here we have restricted ourselves to the resistive

MHD description, the conceptual framework outlined in this
Letter is completely general and can be extended to collision-
less plasmas, provided that the linear andnonlinear regimes of
the tearing instability are understood in the particular
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collisionless formulation that one chooses to adopt; this is
indeed necessary for addressing the onset problem in two
prominent contexts: sawtooth crashes in tokamaks [53] and
reconnection in the Earth’s magnetotail [5].
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