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One of the most important predictions in magnetohydrodynamics is that in the presence of a uniform
magnetic field b0ê∥ a transition from weak to strong wave turbulence should occur when going from large
to small perpendicular scales. This transition is believed to be a universal property of several anisotropic
turbulent systems. We present, for the first time, direct evidence of such a transition using a decaying three-
dimensional direct numerical simulation of incompressible balanced magnetohydrodynamic turbulence
with a grid resolution of 30722 × 256. From large to small scales, the change of regime is characterized by
(i) a change of slope in the energy spectrum going from approximately −2 to −3=2, (ii) an increase of the
ratio between the wave and nonlinear times, with a critical ratio of χc ∼ 1=3, (iii) a modification of the
isocontours of energy revealing a transition from a purely perpendicular cascade to a cascade compatible
with the critical-balance-type phenomenology, and (iv) an absence followed by a dramatic increase of the
communication between Alfvén modes. The changes happen at approximately the same transition scale
and can be seen as manifest signatures of the transition from weak to strong wave turbulence. Furthermore,
we observe a significant nonlocal three-wave coupling between strongly and weakly nonlinear modes
resulting in an inverse transfer of energy from small to large scales.
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Introduction.—Waves are ubiquitous in natural systems.
Although waves are a basic phenomenon that has well
understood for years, the nonlinear behavior of a large
ensemble of waves is still the subject of intense research
[1–6]. When a turbulent state is developed in the presence
of waves, one may distinguish two regimes: weak wave
turbulence and strong wave turbulence. In the first case, the
regime can be described analytically by a classical tech-
nique based on perturbative developments [7]. Exact
solutions of the resulting kinetic equations, corresponding
to power law spectra, can then also be derived [8–13]. In the
second case, we mainly have phenomenological models
[14–16], among which we find the critical balance (CB).
Since its inception, originally in magnetohydrodynamics
(MHD) [17,18], CB has become a popular model in
astrophysics and is believed to also be applicable to other
systems, such as electron MHD, rotating hydrodynamics,
and stratified flows [19–21]. In incompressible MHD, CB
supposes the existence of a mean magnetic guide field b0
(which will be normalized to velocity units hereafter) along
which propagate Alfvén waves in both directions parallel
(∥) to b0. Both linear and nonlinear physics are affected by
b0 with the development of a high degree of anisotropy
such that energy will mainly transfer, or cascade, in the
perpendicular (⊥) direction to b0 [22,23]. In such a
situation, the following inequality is satisfied: k⊥ ≫ k∥.
As a result of this strong anisotropy, the (local) nonlinear

time scale becomes τnl ∼ 1=ðk⊥bÞ, whereas the linear
Alfvén wave time scale is τw ∼ 1=ðk∥b0Þ [for the derivation,
see the comments on Eqs. (2)]. The latter time scale can be
interpreted as the duration of a collision between two wave
packets traveling in the opposite direction at the Alfvén
speed b0. The characteristic transfer time of energy τtr can,
as far as dimensional analysis is concerned, be an arbitrary
function of these two times—an additional physical
assumption is therefore necessary to fix the scaling. This
additional assumption is furnished by the CB conjecture,
which assumes that at all scales in the inertial range
τnl ∼ τw. This physically means that an Alfvén wave packet
suffers a deformation of the order of the wave packet itself
in one collision. Two properties can be derived immediately
from this assumption: (i) the axisymmetric energy spectrum
is simply of the Kolmogorov type, i.e., b2=k⊥ ∼ k⊥−5=3,
because the transfer time identifies to τnl, and (ii) a non-
trivial relationship exists between the parallel and
perpendicular wave numbers in the form of k∥b0 ∼ k⊥b ∼
k⊥2=3 [17,18]; in particular, this latter identity physically
implies that anisotropy will increase at small scales until the
dissipation becomes dominant. The CB regime is drasti-
cally different from theweak wave turbulence one where, in
the latter, many stochastic collisions are necessary to
modify a wave packet significantly. In the case of weak
turbulence, we have the inequality τw ≪ τnl and the transfer
time becomes τtr ∼ τ2nl=τw [14,15]. This transfer time can be
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interpreted as the time that it takes the cumulative pertur-
bation (assumed to accumulate as a random walk) to
become comparable to the amplitude of the wave packet
itself. The resulting power law spectrum in MHD corre-
sponds to k⊥−2. This result, presented first in a nonrigorous
phenomenological way [24], was then derived rigorously
by a perturbative theory [25,26]. In particular, it is shown
that no transfer (cascade) is expected along the parallel
direction, a result stemming from the three-wave resonance
condition [22]. The necessary condition for the existence of
weak MHD turbulence is that the time ratio

χðk⊥; k∥Þ≡ τw
τnl

¼ k⊥b
k∥b0

ð1Þ

is small (≪ 1), whereas in CB it is of the order of 1 (∼1). If
we substitute the weak turbulence spectrum b2=k⊥ ∼ k⊥−2

into Eq. (1), we see that χ is an increasing function of k⊥.
Therefore, there exists a critical scale beyond which the
weak turbulence cascade drives itself into a state which no
longer satisfies the premise on which the theory is based.
The dynamical breakdown of the weak turbulence descrip-
tion is expected to be followed by a saturation around one
of χ because of the causal impossibility to maintain τw ≫
τnl [27]. This means that for a sufficiently extended inertial
range we should observe the transition from the weak
turbulence regime to the CB one [25,27,28]. Note, how-
ever, that CB may be refined by introducing the local
dynamic alignment of the velocity and magnetic field
fluctuations, which corresponds to a modification of the
nonlinear time scale [29]. In this case, the power law energy
spectrum is expected to be ∼k⊥−3=2.
In this Letter, we present, for the first time, direct

evidence of such a weak to strong transition, by means
of a high resolution three-dimensional direct numerical
simulation.
Simulation setup.—The incompressible MHD equations,

for our simulations, in the presence of a constant b0 are

∂tz�∓b0∂∥z� þ z∓ ·∇z� ¼ −∇P� þ ν3Δ3z�; ð2Þ

where ∇ · z� ¼ 0, z� ¼ v � b are the fluctuating Elsässer
fields, v the plasma flow velocity, b the normalized
magnetic field (b →

ffiffiffiffiffiffiffiffiffi
μ0ρ0

p
b, with ρ0 a constant density

and μ0 the magnetic permeability), P� the total (magnetic
plus kinetic) pressure, and ν3 a hyperviscosity (a unit
magnetic Prandtl number is taken). We see that the times τw
and τnl are obtained, respectively, from the linear dispersive
term and the nonlinear term on the lhs of Eq. (2), assuming
a balance (zþ ∼ z− ∼ u ∼ b) and anisotropic (k⊥ ≫ k∥)
turbulence.
Equation (2) is computed using a pseudospectral solver

called TURBO [30,31] with periodic boundary conditions in
all three directions and with 30722 × 256 collocation points
(the lower resolution being in the b0 direction where the

cascade is reduced; however, the numerical box is not
elongated and has an aspect ratio of one). The nonlinear
terms are partially dealiased using a phase-shift method.
The initial state consists of isotropic magnetic and velocity
field fluctuations with random phases such that the total
cross helicity, as well as the total magnetic and kinetic
helicities, is zero (balanced and nonhelical turbulence). The
kinetic and magnetic energies are equal to 1=2 and
localized at the largest scales of the system (wave numbers
k ∈ ½2; 4� are initially excited). We opt for a decaying
turbulence mainly to avoid any artifact due to the external
forcing [32]. Our analysis is systematically made at a time
t� when the mean dissipation rate reaches its maximum, for
which the turbulence is fully developed and the spectrum
the most extended. Note that for t > t�, the spectrum
experiences a smooth self-similar decay that leads to a
slow drift of the critical (transition) scale toward higher k⊥
as the χ parameter is proportional to the amplitude of b. We
fix ν3 ¼ 4 × 10−17 and b0 ¼ 20. Note that initially the
energy of the 2D modes is taken to be zero in order to favor
dynamics dominated by wave modes. With our (isotropic)
initial conditions, anisotropy will develop such that energy
will fill the Fourier space with k⊥ ≫ k∥.
Results.—We introduce the axisymmetric bidimensional

magnetic energy spectrum Ebðk⊥; k∥Þ, which is linked to
the magnetic energy of the system Eb through the relation
Eb ¼ ∬Ebðk⊥; k∥Þdk⊥dk∥. It is well known that in weak
MHD turbulence the 2D mode (k∥ ¼ 0) has a singular role
since it drives the turbulence although it is not a wave (see,
e.g., Ref. [33]). To make the distinction between the
contributions of the 2D mode and the waves, we have
considered the spectrum Ebðk⊥; k∥Þ integrated from k∥ ¼
2–128 (the first plane k∥ ¼ 1 is found to be strongly
coupled with the 2D mode like for enslaved turbulence
[34]). The result is shown in Fig. 1 (top). At large scale
(10 < k⊥ < 100), a spectrum compatible with weak turbu-
lence is observed (∼k⊥−2). We then see that a transition
seems to occur at a scale k⊥ ∼ 100, beyond which the
spectrum becomes less steep. This transition happens
considerably before the dissipative range, which appears
at k⊥ ∼ 600. The plots of the spectra for k∥ ¼ 0 and 1 are
also provided to show that there are similar, and signifi-
cantly weaker in amplitude than the integrated spectrum.
The time ratio Eq. (1) is shown in the middle panel of Fig. 1
for different (small) values of k∥. For this evaluation of χ, b

is given by b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k∥k⊥Ebðk⊥; k∥Þ

q
. In all cases, we see

that χðk⊥; k∥Þ ≪ 1 at the largest scales, as expected for the
weak turbulence regime. The comparison with the spectra
described above shows that a transition occurs when
χðk⊥; k∥Þ approaches unity (> 0.1). For k∥ > 4, we find
that the higher k∥, the smaller χ, as expected from Eq. (1).
Note that we do not observe at small scales an extended
plateau where χ ∼ 1, which could be explained by the lack
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of resolution, the fact that we did not consider the local
mean magnetic field, and/or the absence of dynamic
alignment in the definition of the nonlinear time scale
[35]. The last plot (bottom panel) shows the integrated
spectrum compensated by k⊥3=2. The transition is visible at
k⊥ ∼ 100 with a change in slope going from approximately
k⊥−2 to k⊥−3=2; this happens at χc ∼ 1=3. Figure 2 displays
the isocontours of the bidimensional magnetic energy
spectrum. At large scale the isocontours are strongly
elongated in the k⊥ direction, meaning that the cascade
is strongly anisotropic. At the transition scales (k⊥ ∼ 100) a
drastic modification appears with an increase of the parallel

transfer and therefore a stretching of the isocontours in the
k∥ direction. Interestingly, we may find a domain where the
edge follows approximately a power law in k⊥2=3. This
means that the energy is mainly transferred along an
oblique direction which corresponds to CB. When the
dissipative scales are reached, the stretching of the iso-
contours in the k∥ direction increases further showing a
propensity toward isotropization.
Although Figs. 1 and 2 may provide a first evidence

of a transition from weak to strong turbulence, we want to
find other signatures. The spectrogram (wave-number-
frequency spectrum) of the magnetic energy provides this
additional information. To build such a spectrogram one
follows, in Fourier space and over a window of time around
t�, the quantity Ebðk⊥; k∥; tÞ ¼ jb̂xj2 þ jb̂yj2 þ jb̂zj2, at a
given k∥ (k∥ ¼ 5) and a given k⊥ (from 1 to 1536). We
then perform a time-Fourier transform of these 1536
signals multiplied by a Hamming window and obtain
Ebðk⊥; k∥ ¼ 5;ωÞ. The result is shown in Fig. 3 (the
kinetic energy is not shown but behaves similarly). As
we can see, at large scales (k⊥ < 60) the signal is con-
centrated on a thick band localized around ω=ð2b0Þ ¼ 5;
thus, the variable ω is closely related to k∥ like the Alfvén
wave dispersion relation ωA ¼ k∥b0 (the factor 1=2 in the
frequency normalization is due to the use of the energy, a
square of a field). That means the mode k∥ ¼ 5 communi-
cates only with modes directly contiguous to it, i.e., k∥ ¼ 4,
6, and that the system is not able to redistribute the energy
to a wide range of frequencies, a situation expected when

FIG. 1. Top: Axisymmetric spectra of the magnetic energy at a
given k∥ ¼ f0; 1g and integrated over k∥ (from 2 to 128). Middle:
Time ratio χ at a given k∥ ¼ f2; 3; 4; 5g. Bottom: Integrated
magnetic energy spectrum compensated by k⊥3=2. The dashed
line corresponds to a compensated spectrum with k⊥−2. The
vertical line marks the critical scale at which the transition is
observed.

FIG. 2. Isocontours (in logarithmic scale) of the bidimensional
magnetic energy spectrum Ebðk⊥; k∥; t�Þ. A power law k⊥2=3 is
plotted for comparison in the region corresponding to strong
wave turbulence (see Fig. 1).

FIG. 3. Wave-number-frequency spectrum of the magnetic
energy Ebðk⊥; k∥ ¼ 5;ωÞ. The color map is normalized to the
maximal value of the spectrum at each fixed k⊥. For comparison
we plot k⊥2=3 (solid line) and k⊥ (dash-dotted line). The vertical
dotted line marks the critical scale at which the transition is
observed, and the horizontal dotted line corresponds to
ω=ð2b0Þ ¼ 5.
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the resonant triadic interactions dominate [7]. The cascade
is then strongly anisotropic with a transfer mostly in the
perpendicular direction [33]. The thickness of the band can
be interpreted as nonlinear broadening due to the weak
nonlinearity effects and shows that the resolution in the
parallel direction is high enough to not fall into the discrete
regime [7,36]. From k⊥ ∼ 60, a drastic change appears:
suddenly the energy spreads over a wide range of frequen-
cies. This is the most spectacular evidence of the emergence
of a strong wave turbulence regime in which the parallel
cascade is not frozen and where the k∥ ¼ 5 mode becomes
dynamically connected to a growing number of other
Alfvén modes (i.e., k∥ ≠ 5) when one goes to higher k⊥.
Besides this important property, we note in passing that the
boundary that delimits the region where modes are
dynamically connected follows a power law close to
k⊥2=3, which could be interpreted as a signature of CB
since the balance condition implies ω ∼ 1=τnl. The plot
shows, however, that frequencies are also excited below
this boundary which would correspond to τw > τnl (like in
the solar wind [37], but in apparent contradiction with a
previous claim [27] based on a heuristic description and
the assumption of local interactions). At this stage, it is
important to remind the reader that to define the nonlinear
time scale we have implicitly assumed the locality of the
interactions. Then, the previous observation could also be
interpreted as the signature of nonlocal interactions. Note
finally that in the dissipative range (k⊥ > 600), the boun-
dary discussed above seems to follow a power law close to
k⊥, which could be the signature of an isotropization.
The degree of locality of the perpendicular cascade can

be investigated with the shell-to-shell energy transfer
functions defined by

∂tEuðkÞ¼
X

p

½Tu
uuðk;pÞ−Tu

bbðk;pÞ�−2ν3k6EuðkÞ; ð3Þ

∂tEbðkÞ¼
X

p

½Tb
buðk;pÞ−Tb

ubðk;pÞ�−2ν3k6EbðkÞ; ð4Þ

where [38–40]

TX
YZðk;pÞ ¼

X

q

Imf½k · ẐðpÞ�½ŶðqÞ · X̂�ðkÞ�gδqþp;k ð5Þ

is the transfer function to the mode k of fieldX from mode
p of field Z, mediated by all possible triadic interactions
with modes q of fields Y that respect the condition
k ¼ pþ q. Im denotes the imaginary part and asterisk
the complex conjugate. To study the perpendicular cascade,
we consider concentric cylindrical shells along b0 with
constant width on a logarithmic scale, which we define as
the region k02n=4 ≤ k⊥ ≤ k02ðnþ1Þ=4 for the shells num-
bered 4 ≤ n ≤ N, where we set k0 ¼ 4 and N ¼ 31. The
sum of transfer functions of the total energy
(T ¼ Tu

uu − Tu
bb þ Tb

bu − Tb
ub) is displayed in Fig. 4.

While direct and local energy transfers dominate with
transfers mainly concentrated around the diagonal k⊥ ¼
p⊥ (a result found in previous decaying MHD turbulence
studies [38,40]), one observes some inverse and nonlocal
contributions connecting weak and strong modes. This
behavior is revealed by the presence of negative and
positive energy transfer, respectively, in the top left and
bottom right part of Fig. 4. This result is new and important
for the theory of MHD turbulence where this type of
interaction has never been considered in the past.
Discussion.—The transition from weak to strong wave

turbulence when passing from large to small scales is
believed to be a universal property of several anisotropic
turbulent systems with different underlying physics
[21,41]. To our knowledge—and despite its importance
—this phenomenon has so far never been observed in direct
numerical simulations of MHD. This has left crucial
questions unanswered. As a result of the simulation
conducted here, we provide in this Letter a direct validation
of this cornerstone of anisotropic turbulence theory in the
MHD case, and are now able to provide answers to some of
these fundamental questions. It appears sufficient that the
parameter χðk⊥; k∥Þ crosses the critical value ∼1=3 for a
given k∥ plane to contaminate rapidly the others whatever
their respective degree of nonlinearity. The spectral index
and anisotropy of the total energy after the breakdown of
the weak turbulence description is consistent with the
establishment of CB. In addition, our results indicate that
the transition involves blending and interaction between
weakly and strongly nonlinear modes. This unexpected
behavior revealed by the presence of nonlocal and inverse
energy transfers suggests that the transition is not simply
the juxtaposition of weak and strong wave turbulence as

FIG. 4. Transfer functions Tðk; pÞ of the total energy normal-
ized to the maximum absolute value of each wave number scale.
The vertical and horizontal lines mark the critical scale at which
the transition is observed (see Fig. 3).
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was thought until now. This result is potentially important
for other systems where a transition form weak to strong
wave turbulence is expected [7].
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