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We report the experimental observation of two-mode squeezing in the oscillation quadratures of a
thermal micro-oscillator. This effect is obtained by parametric modulation of the optical spring in a cavity
optomechanical system. In addition to stationary variance measurements, we describe the dynamic
behavior in the regime of pulsed parametric excitation, showing an enhanced squeezing effect surpassing
the stationary 3 dB limit. While the present experiment is in the classical regime, our technique can be
exploited to produce entangled, macroscopic quantum optomechanical modes.
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Cavity optomechanics [1] is achieving several major
experimental breakthroughs, including the optical cooling
of optomechanical oscillators down to a thermal occupation
number around or belowunity [2–7].Agreat deal of attention
is now devoted to possible realizations of strongly non-
classical states of macroscopic variables that would open the
way to new quantum information tools, as well as to crucial
tests on the classical-to-quantum transition. In this frame-
work, several techniques to obtain squeezing of the motion
quadratures have been studied [8–13] and demonstrated on
thermal oscillators [14–20], including quantum nondemoli-
tionmeasurementswithmodulated [8,16] and pulsed [11,18]
readout and parametric excitation [12,14,15,17,19,20]. Very
recent reports describe the quantum squeezing of the motion
of a cooled nano-oscillator exploiting the mechanical inter-
action with a microwave field [21–23]. A different class of
macroscopic, strongly nonclassical systems can be obtained
by involvingmore than one optical and/or mechanical mode.
In particular, two mechanical modes have been exploited in
optomechanical hybridization [24–27] and are the basic
ingredients of two-mode mechanical squeezing, which is
the subject of this work.
A two-mode mechanical squeezed state is characterized

by correlated fluctuations between one quadrature of the
first oscillating mode and one of the second mode (as well
as between the corresponding conjugate quadratures). In a
quantum system, such correlations translate into entangle-
ment between the two oscillators, i.e., the mechanical
correspondent of optical “twin beams” generated in optical
parametric amplifiers [28]. In a suitable combination of

quadratures of the two oscillators, the fluctuations are
reduced below their standard quantum level (or, in a
classical system, below the thermal noise level). Such a
reduction can be obtained by implementing a modulation of
the spring constant at the sum of the resonance frequencies
of the two oscillators. Experimental demonstrations of fully
mechanical two-mode squeezing of thermal fluctuations
have been recently reported for nano-oscillators where the
parametric modulation is obtained by electromechanic
driving, either incorporating a piezoelectric transducer
directly into the mechanical elements of a device designed
on purpose [29] or taking advantage from an accidental
resonance with a mode of the substrate of a membrane
oscillator [30]. Here we study two-mode thermal squeezing
in a cavity optomechanical system, exploiting parametric
modulation of the optical spring. Our method, just based on
the fundamental optomechanical interaction, is not limited
to our specific oscillator and can be extended to a variety of
other cavity optomechanical systems, such as optical
cavities with a refractive membrane in the middle
[6,7,27,31], whispering gallery cavities [5,24,26,32], zip-
per cavities [24], or systems exploiting the pair of anti-
symmetric torsion modes in double- or quad-paddle
oscillators [33]. In addition to stationary variance and
spectrally resolved measurements, we describe analyses
of dynamic behavior in nonstationary conditions, showing
an enhanced squeezing effect surpassing the stationary
limit determined by the onset of parametric instability.
Our silicon oscillator is made on the 70 μm thick device

layer of a SOI wafer [34] and is composed of a central mass
supported by structured beams [35], balanced by four
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counterweights on the beams’ joints [36]. On the surface of
the central disk, a multilayer SiO2=Ta2O5 dielectric coating
forms a high reflectivitymirror. For themain oscillatormode,
labeled 1 in Fig. 1(a) (resonance frequency 172 kHz,
effective mass 250 μg), the motion of the mirror is balanced
by the motion of the counterweights. As a result, the total
recoil on the inner frame is null and the joints become nodal
points. In a second oscillation mode, the counterweights
move in the samedirectionof themirror [mode 2 inFig. 1(a)],
giving slightly different frequency (215 kHz) and mass
(100 μg). Thanks to the overall design strategy, both modes
reproducibly display a mechanical quality factor of about
Q≃ 5 × 104 at room temperature, only limited by the
thermoelastic dissipation in the substrate, and the balanced
mode exhibits a Q exceeding 106 at cryogenic temperature
[37]. The oscillator reflecting surface is the end mirror of a
Lcav ¼ 1.27 mm long, high finesse (F ¼ 18000, half-line-
width κ=2π ¼ 3.2 MHz), overcoupled (input mirror trans-
mission T ¼ 300 ppm) Fabry-Perot cavity.
In our setup [Fig. 1(c)], two laser beams derived from the

same Nd:YAG source are superimposed with orthogonal
polarizations and coupled to the cavity. The first one is used

to obtain a signal proportional to the detuning, with a rf
sidebands technique. This signal is used to lock the laser to
the cavity resonance, with a bandwidth of about 10 kHz,
and to measure the oscillator displacement xðtÞ.
Furthermore, it is sent to two double-phase digital lock-
in amplifiers whose outputs are acquired for the
reconstruction of the motion of the oscillating modes.
The second, more powerful beam, with a controllable
frequency shift with respect to the previous one, sets
and controls the optical spring.
The intracavity radiation pressure force, depending on

the detuning and therefore on the oscillator position,
originates a so-called optical spring [1] that modifies the
mechanical resonance frequency. Moreover, due to the
finite cavity field buildup time, it changes the effective
damping of the oscillator motion, resulting in modal optical
cooling (cold damping) when the input radiation frequency
ωL=2π is redshifted with respect to a cavity resonance
ωc=2π. In the bad cavity limit and for small detuning (i.e.,
when both the mechanical frequencies and Δ ¼ ωL − ωc
are well below κ), the optical spring constant can be
approximated as Kopt ≃ ð4ωLP=Lcavκ

2cÞΔ, where P is
the intracavity power. In the same conditions, the effective
linewidth becomes γeff ¼ γm þ γopt, with γopt ≃
−ð2Kopt=mκÞ (m is the mass, ωm=2π the resonance
frequency, and γ the linewidth of the free oscillator)
[1,39]. In our experiment, performed at room temperature,
we typically use a detuning of Δ=κ ≃ −0.17. The oscil-
lation modes are optically cooled down to an effective
temperature of ∼2.5 K, corresponding to a linewidth
γeff=2π ¼ 480 Hz (800 Hz) and a variance of 110 fm2

(200 fm2) for the first (second) mode.
We exploit the optical spring to parametrically stabilize the

first oscillation mode at the chosen effective mechanical
resonance frequency, against the effect of laser fluctuations
[19,38]. Such parametric locking is also useful for the
second mode, since it stabilizes the effect of the optical
spring.
We now consider two oscillation modes, both changing

the cavity length, with displacement xiðtÞ (i ¼ 1, 2),
momentum piðtÞ, resonance frequency ωi, mass mi, and
slowly varying quadratures ðXi; YiÞ. In our experiment, the
laser detuning is modulated at ω1 þ ω2 such that Δ →
Δ½1þ β cosðω1 þ ω2Þt� (with β ≪ 1). As a consequence,
the optical spring constant is also modulated, and the
resulting force is −ðx1 þ x2ÞKβ cosðω1 þ ω2Þt, with
Kβ ¼ Koptβ. Writing the modulated force in terms of the
quadratures, we derive that its quasiresonant terms are
associated to the two-mode squeezing Hamiltonian
HI ¼ ðKβ=4ÞðX1X2 − Y1Y2Þ, which couples the quadra-
ture X1 with Y2 and Y1 with X2. The Langevin equations
governing their motion can be written as _XþAX ¼ ξ,
where X ¼ ðX; YÞ can be either (X1; Y2) or (Y1; X2), ξ is
the noise source, and the system matrix is

FIG. 1. (a) Shape of the two oscillation modes, obtained by
finite elements model simulations. (b) Probability distributions in
the ( ~X1; ~Y2) quadratures plane. Left: Thermal distributions,
without parametric excitation. Right: With parametric excitation,
the fluctuations in the two quadratures are strongly correlated. ~X1

and ~Y2 are normalized quadratures of two modes. (c) Experi-
mental setup. The first oscillation mode is parametrically locked
at f0 using the optical spring, as described in Refs. [19,38]. The
frequency fsum − f0, corresponding to the resonance of the
second mode, is selected after a mixer by the low-pass filter
(LPF) and used as reference for the second lock-in amplifier.
PDH: Pound-Drever-Hall.
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A ¼
� γ1

2
g1

g2
γ2
2

�
; ð1Þ

with gi ¼ Kβ=4ωimi. In the following we will just present
the results for the ðX1; Y2Þ quadratures, since in our
experiment Y1 is exploited (and therefore modified) in
the parametric stabilization servo loop [38].
Stationary, null-average solutions are stable if the para-

metric gain g is such that g ¼ Kβ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1γ2m1m2ω1ω2

p
< 1.

In this situation, it is interesting to evaluate the peak
spectral densities of the quadratures (at ω ¼ 0). Indeed,
they are proportional to the variance measured after
integration over periods much longer than 1=γ, which is
a frequent experimental procedure.
In the simplified case of oscillators with identical

susceptibilities (with mass m, resonance frequency ω0,
damping rate γ), the eigenvalues of A are simplified to
λ� ¼ ðγ=2Þð1� gÞ and the respective eingenvectors are
X� ¼ ðX � YÞ= ffiffiffi

2
p

. On the combined quadrature Xþ, the
peak spectral density is reduced by a factor of ð1þ gÞ2,
while the total variance is reduced by a factor of ð1þ gÞ,
with a maximum reduction of, respectively, −6 and −3 dB
when approaching the instability threshold. The quadrature
X− has maximal fluctuations, with peak spectral density
increased by 1=ð1 − gÞ2 with respect to its value in the
absence of parametric modulation.
In the realistic case of different parameters between the

two oscillation modes, to maintain meaningful combined
quadratures it is useful to first normalize each quadrature
to its standard value, calculatedwithout parametric excitation
[the normalized quadratures are ð ~X; ~YÞ]. The equations of
motion remain formally the same [40]. The general com-
bined quadrature is now defined as Xθ ¼ ~X cos θ þ ~Y sin θ,
with spectral density SθðωÞ and total variance σ2θ. Without
parametric excitation, we have symmetric distributions with
Sθð0Þ ¼ 1 for any value of θ, as shown in the left-hand panel
of Fig. 1(b). With parametric excitation, the two quadratures
corresponding to eigenvectors of A still maintain a
Lorentzian spectrum, with width λ�. However, differently
from the case of identical oscillators, they do not correspond
to extrema in the quadrature fluctuations. Sθð0Þ should be
minimized with respect to θ to derive the combined quad-
rature exhibiting the largest squeezing, in correspondence to
θmin. The experimental probability distribution with para-
metric driving is shown in the right-hand panel of Fig. 1(b).
The strong anticorrelated fluctuations in the two quadratures
are clearly revealed by the elongated shape of the graph. In a
narrow interval of θ, close to π=4, the fluctuations of Xθ are
below the thermal ones.
It is important to remark that the described picture

assumes an exact detection phase. In the realistic case of
(small) fluctuations Δθ during the measurement time, the
measured minimal spectral density is Smin þ hðΔθÞ2iSmax,
where Smin ¼ Sθmin

ð0Þ and Smax ¼ Sθminþπ=2ð0Þ (a similar
expression holds for the variance). This feature is crucial to

describe the experimental results. The expected minimal
spectral density now reaches a minimal value before the
instability threshold gain, followed by a deterioration of the
squeezing.
In Fig. 2 we show our experimental measurement of Smin

and Smax as a function of the parametric gain, together with
the corresponding theoretical predictions. The experimental
values of Smin and θmin are obtained by globally minimizing
the peak spectral density of the combined quadrature
ð ~X1 cosϕ1þ ~Y1 sinϕ1Þcosθþð ~X2 sinϕ2þ ~Y2 cosϕ2Þsinθ,
with respect to ϕ1, ϕ2, and θ, to account for possible errors
in the fixed lock-in reference phases.
As expected and already observed [29,30], the squeezing

does not surpass −6 dB before the onset of parametric
instability. Moreover, Smin reaches a minimum before the
instability threshold gain, in contrast to the expected
behavior for a perfect and stable detection phase, displayed
in Fig. 2 with a gray dash-dotted line. This feature, already
observed in recent experiments [29], is well reproduced by
the complete model with the parameters of our different
oscillating modes. The theoretical values are calculated
using independently measured oscillator parameters, and
just fitting to the experimental data two parameters: (a) the
threshold parametric gain, whose independent estimation is
not accurate enough, and (b) the phase variance hðΔθÞ2i
that results to be around 10−3 rad2.
Above the instability threshold, the system admits no

stable solutions and therefore no stationary spectra.
However, one can still calculate the behavior of the variance
σ2 in measurements of a quadrature, performed at the time t
after the switch-on of the parametric modulation [40].
To start describing the physics involved, we again present

the case of identical oscillators. As before, the extrema of the
variance are found for θ ¼ �π=4 at any time t, i.e., in

FIG. 2. Experimentalmeasurements of the spectral densitiesSmin
(full symbols) and Smax (empty symbols) as a function of the
parametric gain, together with the corresponding theoretical
predictions (solid lines). The signals from the four quadratures
are preliminarily normalized in order to have unity spectral density
in the absence of parametric excitation. Different colors (gray
tones) correspond to two data sets, taken with different levels of
optical cooling. The lowest measured value of Smin is 0.38 (the
theoretical prediction is 0.36). The dash-dotted line shows the
prediction for a perfectly stable and optimized detection phase.
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correspondence to the eigenvectors ofA, with σ2min ≡ σ2þ and
σ2max ≡ σ2−. The respective temporal evolutions are
σ2�ðtÞ ¼ σ2ð0Þfexpð−2λ�tÞ þ ðγ=2λ�Þ½1 − expð−2λ�tÞ�g.
For g > 1, σ2min approaches 1=ð1þ gÞ (i.e., a squeezing
exceeding −3 dB) with a time constant τshort ¼ 1=2λþ ¼
1=γð1þ gÞ, while σ2max exponentially diverges with the
longer time constant τlong ¼ 1=2jλ−j ¼ 1=γðg − 1Þ, exhibit-
ing the critical slowing-down at threshold. If the system
dynamic range is large enough, it can be left evolving after
the switch-on of the parametric excitation for few τshort,
reaching, therefore, a stronger two-mode squeezing with
respect to the stationary situation.
For different oscillators, the variances σ� in the combined

quadratures corresponding to eigenvectors of A still
evolve exponentially with time constants 1=2λ�, while
for any other quadrature we expect the combination of
exponentials with time constants 1=2λþ, 1=2λ−, and
1=ðλþ þ λ−Þ. As in the stationary case, minimal fluctuations
are no longer found for the eigenvector corresponding to λþ
(except for asymptotically long t, as we will see). Moreover,
here the optimal phase θ depends on t, as well as on g.
We have applied to our system periodic bursts of

parametric modulation. The bursts are long enough to
observe the system evolution, and are repeated at the rate of
50 Hz. The four output signals of the two lock-in amplifiers
(integrated with a time constant of 40 μs) are sampled at
1=Δt ¼ 200 kS=s, then sectioned synchronously with the
periodic bursts, so that each section starts at the beginning
of a burst. We note that the sampling rate is much larger
than λ�. For each nth data sample, we calculate variances
and cross-correlations between the four signals, at the time
nΔt after the onset of the parametric modulation, over 5000
consecutive bursts. The minimal variance σ2min is obtained
by global minimization with respect to the three phases ϕ1,
ϕ2, and θ. In Fig. 3 we report the time evolution of σ2min,
together with the prediction of the model, for three levels of
gain g below, near, and above the instability threshold. As
expected, in the last case the variance falls below the

stationary limit of ∼0.5. The effect of the phase fluctuations
Δθ is even more crucial than in stationary conditions. The
measurable minimal variance presents a minimum for an
optimal value of t, after which it starts increasing due to the
mixing with the exploding quadrature. We also remark that,
in the absence of phase fluctuations, there is a qualitative
difference between the two regimes g < 1 and g > 1. In the
former case, the minimal variance is always lower than σ2þ,
as in the stationary case (see Fig. 3). Above threshold,
instead, it asymptotically converges to σ2þ, and the com-
bined quadrature with minimal fluctuations tends to
coincide with the stable eigenvector.
In conclusion, we have prepared an optomechanical

system in a two-mode squeezed thermal state. Some features
recently observed in purely mechanical and electromechani-
cal systems, such as the deterioration of the squeezing before
the instability threshold, are accurately observed and well
reproduced by a model considering different mode param-
eters. Moreover, we analyze the dynamical evolution after
the onset of the parametric modulation and show that the
−3 dB limit in the squeezing of the two-mode variance,
rigorous in stationary conditions for identical oscillators, is
overcome for a bit of time. Even in this case, our model well
reproduces the experimental data, and underlines the crucial
role of phase fluctuations. Indeed, both the achievable
minimal uncertainty and its temporal stability are actually
determined by such phase noise.
Our system operates with low optical and mechanical

losses and implements optical cooling and frequency
control, with a setup similar to those employed to prepare
the oscillator close to its ground state. In such conditions,
our technique can produce entangled states of the mechani-
cal oscillation modes [41,42]. As shown in Refs. [42,43],
the two-mode squeezing variance is an indicator equivalent
to the logarithmic negativity, and a value of the combined
variance below unity is always a signature of entanglement
between the two oscillating modes. For g ¼ 0, the variance
of each quadrature is ð2nþ 1Þ, where the occupation

FIG. 3. Time evolution of the experimental minimal variance σ2min after the onset of the parametric modulation (symbols), together
with the prediction of the model (solid lines), for different modulation amplitudes. The normalized parametric gains ḡ extracted from the
fits are (a) ḡ ¼ 0.92, (b) ḡ ¼ 1.06, (c) ḡ ¼ 1.30. The second fit parameter is the phase noise, which results to be (a) Δθrms ¼ 0.041 rad,
(b)Δθrms ¼ 0.045 rad, (c)Δθrms ¼ 0.070 rad. The variance is measured over 5000 consecutive bursts, repeated at the rate of 50 Hz. The
duty cycle is 50% for (a) and (b) and 15% for (c). Light (green) dashed lines: predicted evolution in the absence of phase noise (Δθ ¼ 0).
Black dashed lines: predicted evolution of σ2þ.
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number n must be calculated using the effective temper-
ature actually achieved by optical cooling. If the variance
can be squeezed by a factor of ∼2, the preliminary
requirement is thus a precooling down to n < 0.5. Our
oscillator is relatively heavy (its zero-point motion is as low
as 10−17 m) and its preparation close to the ground state is
still in progress. However, we stress that the methods
described in this Letter can be applied, e.g., to systems with
SiN refractive membranes that have recently achieved
thermal occupation numbers not far from the requirement
(e.g., n ¼ 0.84� 0.22 is reported in Ref. [7]).
Thanks to its flexibility, our method opens the way to

more elaborate schemes including more than two oscillat-
ing modes, overcoming the experimentally challenging
requirement of equal oscillation frequencies, and leading
to experimental studies of complex multipartite entangle-
ment in macroscopic systems. The experimental techniques
described here can also be applied to different devices
embedded in the same optical cavity, or even in separated
cavities sharing the same optical field [44], thus producing
well-separated, entangled macroscopic oscillators, particu-
larly interesting for investigating quantum decoherence.
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