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The best possible precision is one of the key figures in metrology, but this is established by the exact
response of the detection apparatus, which is often unknown. There exist techniques for detector
characterization that have been introduced in the context of quantum technologies but apply as well for
ordinary classical coherence; these techniques, though, rely on intense data processing. Here, we show that
one can make use of the simpler approach of data fitting patterns in order to obtain an estimate of the
Cramér-Rao bound allowed by an unknown detector, and we present applications in polarimetry. Further,
we show how this formalism provides a useful calculation tool in an estimation problem involving a
continuous-variable quantum state, i.e., a quantum harmonic oscillator.
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With the introduction of quantum metrology, a clear
framework has been established for understanding metro-
logical protocols as constituted of three steps: the preparation
of the probe, its evolution through the interaction with the
target system, and, finally, the extraction of information from
a measurement [1–3]. When targeting the best precision,
these steps cannot be taken as independent, in that the probe
needs optimization on the specific interaction, and, in turn,
the measurement needs to take into account both preparation
and interaction to achieve the best precision. Not only is this
description effective when using quantum objects, but it can
be adopted for designing quantum-inspired optimal proto-
cols in the classical domain, such as for position sensing
[4,5], and for polarimetry [6,7]. However, fundamental limits
in measurements can be hard to achieve since further
limitations can originate in imperfect—or even faulty—
behaviors of the setup.
A possible solution for mitigating the effect of nonideal

measurements consists of adapting the design of the probe
[8–12]. This normally requires a trustworthy characterization
of the measurement device which can be achieved by means
of detector tomography [13], i.e., by reconstructing the
action of the measurement device given the outcomes from
a quorum of input preparations. In the quantum description,
the knowledge on the device is cast as matrices linking the
input probability amplitudes to that of each outcome [14];
once thesematrices are known, the optimal probe state can be
found as the oneminimizing thevariance of a valid estimator.
In this Letter we discuss a different, more direct approach

to the design of optimal probes when dealing with detectors
departing from an idealized description, bymaking use of the
data fitting patterns associated with the device [15,16].
These are the response function of the detector to a set of
known input states, which can be used for reconstructing the
response function to an arbitrary state. This method allows

for state reconstruction without having perfect knowledge of
the positive operator-valued measurement (POVM) of the
detector; here, we discuss how these ideas can find appli-
cation in metrology as well.
Let us consider the following quantum estimation

problem for a set of unknown parameters ~ϕ. The quantum
system is typically prepared in a pure probe state jψ0i and
the interaction with the sample is described by a quantum
completely positive map E ~ϕ. A measurement M, formally

corresponding to a POVM, is then performed on the output

state ρ~ϕ ¼ E ~ϕðjψ0ihψ0jÞ, and it delivers an estimator ~ϕ0,
i.e., a mapping from the experimental data to the parameter
space. The data set should be sufficiently large to ensure
that the estimator is unbiased, i.e., that the expectation

value E½~ϕ0� ¼ ~ϕ. The uncertainties on the individual
parameters, as well as their correlations, are captured by
the covariance matrix Σ ¼ fΣðϕi;ϕjÞgi;j [3], whose ele-
ments are given by Σ½ðϕi;ϕjÞ� ¼ E½ðϕ0

i − ϕiÞðϕ0
j − ϕjÞ�.

The quantum and classical Cramér-Rao bounds establish
that, upon the realization of M experiments, the covariance
matrix is limited as

Σ ≥
F−1ð~ϕÞ

M
≥
H−1ð~ϕÞ

M
; ð1Þ

where we have introduced, respectively, the quantum Fisher
information matrixH and the (classical) Fisher information
(FI) matrix F. The former is a property of the output
state only, ρ~ϕ, and its elements can be evaluated as

Hi;jð~ϕÞ ¼ Trðρ~ϕ½Li; Lj�þÞ, where the symmetric logarith-

mic derivative operators Li are defined as

∂ϕi
ρ~ϕ ¼ 1

2
ðLiρ~ϕ þ ρ~ϕLiÞ ≔ ½ρ~ϕ; Li�þ; ð2Þ
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and ½A;B�þ denotes the anticommutator. On the other hand,
the FImatrix is associatedwith a givenmeasurementM, and
its elements are defined through the conditional probabilities
pðmj~ϕÞ of observing the outcome m given the values ~ϕ:

Fi;jðϕÞ ¼
X
m

ð∂ϕi
pðmj~ϕÞÞð∂ϕj

pðmjϕÞÞ
pðmj~ϕÞ

: ð3Þ

While a measurement saturating the quantum Cramér-Rao
bound always exists for single-parameter estimation, this is
not always attained in the general case, and trade-offs have to
be established, depending on the interest of each parameter.
Once the optimal performance of the experiment has been

designed in terms of probe state jψ0i and measurement M,
then the closest measurement setup has to be implemented.
Thiswill unavoidably depart from the ideal case, resulting in a
decrease of information; furthermore, in the case of multi-
parameter estimation, one also has to take into account
possible correlations between parameters, which should be
avoided, ingeneral, inorder to reduce lossof information.This
must be reflected in the choice of the optimal POVM;
avoidance of correlations demand a specific symmetry of
the states associatedwith the POVMoutcomes. Imperfections
are likely to spoil such a symmetry and thus might introduce
spurious correlations. These effects can be reduced if one
seconds theactualmeasurement andutilizes instead adifferent
probe state jξ0i. In order to obtain a recipe for preparing jξ0i,
one needs full information on the action of the detector, which
would demand a tomography of the measurement apparatus.
This demands an optimization routine on the experimental
output probabilities qαðmÞ, collected when sending into the
device a set of fiducial states jαi; the routine finds the closest
well-defined measurement matrices Πm associated with each
outcome [13,17–19]. Then, using the expression for the
classical Fisher information, Eq. (3), the optimal state is

found using Born’s rule pðmj~ϕÞ ¼ TrðE ~ϕðjξ0ihξ0jÞΠmÞ.
Here, we discuss how the need for the first routine

can be circumvented, and a more direct approach to data
analysis is possible. The idea is that, through the data
fitting patterns of the detector, one obtains an explicit
expression for the Fisher information which can be used
to get the optimal state. Data fitting patterns (DFPs) are
defined as the output probabilities qαðmÞ for an over-
complete set fjαig, by which any state ρ can be written
as ρ ¼ P

αcαjαihαj [15]. If the detection scheme is informa-
tionally complete, then any state can be reconstructed using
the fact that its outcome probabilities are, by linearity,
pðmÞ ¼ P

αcαqαðmÞ; state tomography is indeed the origi-
nal aim for the introduction of this formalism, which
complements other approaches to viable state reconstruction
with untrusted detectors [20]. Linearity also ensures that the
Fisher information (3) admits a decomposition

Fi;jðϕÞ ¼
X
m

ðPα∂ϕi
Cαð~ϕÞqαðmÞÞðPα∂ϕj

Cαð~ϕÞqαðmÞÞP
αCαð~ϕÞqαðmÞ

;

ð4Þ

where fCαð~ϕÞg are the coefficients of the state E ~ϕðjξoihξ0jÞ.
Therefore, the Fisher information can be optimized based on
the knowledge of the data fitting patterns only, and it does
not require reconstructing the elements Πm, which could be
computationally demanding. It should be noticed that the
advantage is purely in the postprocessing stage since the
requirements on the cardinality of the overcomplete set are
the same for detector tomography as for the DFPs [15,16].
The application of the DFP method in this case differs

from the original proposal in that it can be applied to
informationally incomplete measurements, i.e., measure-
ments which are not sufficient for a complete tomographic
reconstruction. This extension is possible because, in the
general case, the parameters we need to estimate are a
limited set with respect to the complete set defining a
quantum state univocally in the relevant Hilbert space. This
philosophy has been applied to the reconstruction of photon
statistics with pseudonumber resolving detectors [21].
Experimental example 1: Single-qubit projective meas-

urement.—We start with a simple example of phase esti-
mation with single qubits. Although we cast it in the
language of quantum information, this problem is fully
equivalent to optimal phase estimation in classical polar-
imetry. Our aim is to measure a small phase ϕ ∼ 0 using an
approximate projective measurement, implemented by a
half-wave plate set at the angle θ, and a polarizing beam
splitter. The DFPs are collected by measuring the output
intensities using the overcomplete set of six states corre-
sponding to the eigenstates of the three Pauli operators; for
polarization qubits, these are given by four linear [horizontal
(H), vertical (V), diagonal (D), and antidiagonal (A)] and
two circular [right (R)- and left (L)-handed] polarizations.
Since the problem involves a single parameter, optimization

simply consists of maximizing the value F¼defF1;1 of the
Fisher information (4) by choosing the appropriate coef-
ficients CαðϕÞ, with α ∈ fH;V;D; A; R; Lg.
The search can be effectively restricted to pure states, as

these are extremal for F [3]; in this case, this is effectively
casted as the minimization of a function of two parameters.
The optimization procedure needs to be carried out cau-
tiously. Small systematic errors in determining the DPFs can
lead to unphysical maxima resulting from negative eigen-
values of the measurement matrix. One then needs to
introduce the constraint of only looking at states giving
positive values for the estimated probabilities. In our exam-
ple, an optimal measurement is achieved through two
conditions. The first has the light concentrated mostly in
one of the outcomes, and then one looks for small variations
of the second from the zero level. The second has light almost
equally distributed between the two outputs, and one looks
for deviations from the perfect balance [22]; the systematic
effects explained above favor the second maxima, a result
which is consistent with the resilience of these optimal states
to small dephasing [22]. Losing information on the second
set of maxima is the price one pays for the simplicity of the
method. The results are summarized in Fig. 1, wherewe plot
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the Fisher informationF we obtain as a function of the angle
setting θ: our method allows us to identify the state that lies
closest to the prediction for an ideal Pauli measurement.
Experimental example 2: Single-qubit four-outcome

measurement.—The next example we consider is acting
on a single qubit, performing a σz measurement half of the
time and a σx-measurement the remaining half. Again, we
can make a direct parallel with polarimetry and use it for
estimating jointly a phase shift ϕ ∼ 0, followed by a
rotation χ. The measurement is ideal for small rotations
χ ∼ 0; by ideal here, we do not mean a saturation of the
Cramér-Rao bound, which is prevented by a Heisenberg-
type relation [23], but the saturation of the bound

Fϕ;ϕ

Hϕ;ϕ
þ Fχ;χ

Hχ;χ
≤ 1; ð5Þ

which effectively limits all possible measurements on a
single qubit when it comes to two-parameter estimation
[23,24]. For a perfect measurement, we expect
ðFϕ;ϕ=Hϕ;ϕÞ ¼ ðFχ;χ=Hχ;χÞ [25]. However, in our imple-
mentation, this condition can be affected by imperfections
in the optical components; we use our DFP method to
understand in what measure. The optimization should not
be carried out as a direct optimization of the bound
equation (5), but consider the effective values F0

ϕ;ϕ ¼
1=ðF−1Þϕ;ϕ ¼ Fϕ;ϕ − F2

χ;ϕ=Fχ;χ and F0
χ;χ¼1=ðF−1Þχ;χ¼

Fχ;χ−F2
χ;ϕ=Fϕ;ϕ, i.e., the quantities bounding the individual

variances for each estimator [3].
Figure 2 summarizes the results of numerical searches of

the Fisher information matrix Fðχ;ϕÞ, associated with
different values of the phase shift ϕ for χ ¼ 0; we also
compare them with the predictions obtained by a detector
tomographyof our apparatus.Weobserve anuneven splitting
of the information between the two parameters, as a result of
the experimental imperfections. The direct estimate remains

close to those from the tomography, although oftentimes the
correlation terms Fχ;ϕ present some discrepancies.
Theoretical example: Weak-field homodyne.—Our

approach can also be useful for obtaining theoretical
predictions when working with measurements whose
description involves a complex expression of its POVM.
This is the case, notably, for continuous-variable state
observed with hybrid detection schemes, mixing elements
from photon counting and homodyning [18,26–31].
In most cases, the most practical choice consists of

inspecting the response to coherent states jαihαj. By
linearity, the response px for the outcome x can by
expressed in terms of the P representation of the state:

px ¼ Tr½Πxρ� ¼
Z

d2 αPðαÞqxðαÞ: ð6Þ

This expression is helpful mostly in the classical regime,
when the P function has an analytical behavior, but it has
limited use for quantum states. This problem can be solved
by using the explicit relation between the P function and
the normally ordered characteristic function: χNðβÞ ¼
Tr½ρe−iβâ†e−iβ�â�, giving

PðαÞ ¼ 1

π2

Z
d2 βχNðβÞeiðβ�αþβα�Þ: ð7Þ

When using the Fourier relation (7) in the expression of the
probability (6) for the outcome x, we find

px ¼
Z

d2 βχNðβÞ ~qxðβÞ; ð8Þ

FIG. 1. Reconstructed Fisher information for two-outcome
polarization measurements. The experimental points correspond
to intensity measurements taken on a He:Ne laser with an optical
power meter. The solid line indicates the prediction based on a
model of the measurement. (Inset) Experimental setup, consisting
of a half-wave plate and a polarizing beam splitter separating the
horizonal and vertical components.

FIG. 2. Reconstructed Fisher information for a four-outcome
polarization measurement on either the D=A (Pauli X) or H=V
(PauliZ) basis:ϕ is the scanned parameter, while χ is kept constant
at the value 0. The experimental points correspond to intensity
measurements taken on a He:Ne laser with an optical power meter:
yellow, Fχ;χ ; blue, Fϕ;ϕ; green, Fχ;ϕ. The solid line indicates the
prediction based on the reconstructed detector tomography [13].
(Inset) Experimental setup, consisting of a nonpolarizing beam
splitter (BS) and two polarizers along different directions (H=V in
the upper arm,D=A in the lower arm). The asymmetry in the Fisher
information associated with the two parameters arises from the
dependence of the splitting ration of BS on the polarization.
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where we have introduced the Fourier transform of the
DFP,

~qxðβÞ ¼
1

π2

Z
d2 αeiðβ�αþβα�ÞqxðαÞ: ð9Þ

This expression is more conveniently cast in terms of the
standard symmetric characteristic function which origi-
nates the Wigner representation:

px ¼
Z

d2 βχSðβÞejβj2=2 ~qxðβÞ: ð10Þ

Finally, we can manipulate this expression to make
the Wigner function explicitly appear by using its
explicit link to the characteristic function χSðβÞ ¼R
d2 αWðαÞe−iðβ�αþβα�Þ, thus writing

px ¼
Z

d2 αWðαÞζxðαÞ; ð11Þ

with

ζxðαÞ ¼
Z

d2 βe−iðβ�αþα�βÞejβj2=2 ~qxðβÞ: ð12Þ

Remarkably, our formalism can deal with classical fields
through a straightforward correspondence principle,
Eq. (6), as well as with quantum fields, although through
a more involved expression, Eq. (11).
We now consider the explicit case of the weak-field

homodyne [18,30,31], for which the DFP approach is
particularly suited [32]. This is the leading example of a
hybrid detector: when using this technique, a signal is
combined on a 50∶50 beam splitter with a local oscillator,
whose intensity is comparable to that of the signal—hence,
in a coherent state jγi at the few-photon level. The two
outputs of the beam splitter are then monitored with a
photon-counting detector; this is generally implemented by
dividing light into N bins—either temporal or spatial—
each of them measured with a click–no click detector. The
corresponding DFPs are written as

qxðαÞ ¼
�
N
x1

��
N
x2

�Xx1
y1¼0

Xx2
y2¼0

ð−1Þx1−y1þx2−y2

�
x1
y1

��
x2
y2

�

× exp

�
−
N − y1
2N

jαþ γj2 − N − y2
2N

jα − γj2
�
;

ð13Þ
where x1 (x2) denotes the detection event of the detector on
the transmitted (reflected) arm, and we noted that
x ¼ fx1; x2g. In order to calculate its Fourier transform,
we find it convenient to consider separately each term in the
sum, whose Fourier transform, according to the general
expression (12), takes the form

~qxðβÞ ∝
σ2

π
e−σ

2ðjβj2−j~γj2−iðβ� ~γþβ~γ�ÞÞe−ðjγj2=σ2Þ; ð14Þ

with the shorthand notation ~γ ¼ ðy2 − y1Þγ=ð2NÞ and
σ−2 ¼ ð2N − y1 − y2Þ=ð2NÞ. Finally, the convolution
(12), gives the expression

ζxðαÞ

∝
σ2

σ2−1
2

e−½ðjαj2þσ2j~γj2=2Þ=ðσ2−1=2Þ�e½σ2=ðσ2−1=2Þ�α� ~γþα~γ�e−ðjγj2=σ2Þ;

ð15Þ

from which one can then calculate the Fisher information
associated with an arbitrary state via Eq. (11).
The Fisher information on a small phase shift ϕ attached

to each outcome (13) FðxÞ ¼ ½∂ϕqxðαÞ�2=qxðαÞ is shown in
Fig. 3 for the caseN ¼ 4. Inspection of these curves reveals
that, for a given local oscillator γ, the Fisher information is
concentrated in a few detection events, and it is sharply
peaked around α ¼ γ. Furthermore, being the local oscil-
lator in a coherent state with no correlations to the probe,
fluctuations in the photon number cannot be suppressed
below the Poissonian noise. Therefore, coherent states are
optimal probes for this detection scheme, and, despite the
close resemblance to ordinary strong-field homodyne, there
is no advantage in utilizing squeezing.

FIG. 3. Fisher information associated with different outcomes of
a weak-field homodyne for coherent states of real amplitude α, for
different local oscillators γ. The outcomes are in the order
ðx1; x2Þ ¼ ð1; 0Þ, (0,1), (1,1), (2,1), (3,1), and (4,1).The (0,1) term
is negligibly small, and so are other contributions in this regime.
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In order to confirm these observations, we adopt
the DFP formalism to compute the Fisher information
associated with squeezed states when estimating a small
phase, and we compare it to the benchmark provided by
coherent states. We do so at a given energy, remembering
that for a displaced squeezed vacuum WðαÞ ¼ ð2=πÞ×
exp ½−2s2ðαx − α0Þ2 − 2α2p=s2�, where α ¼ αx þ iαp, and
s < 1 (s > 0) quantifies the squeezing in the P (X)
quadrature; the average photon number in this state is
α20 þ ½ðs2 − 1Þ2=4s2�. The typical behavior is illustrated in
Fig. 4, where we show the Fisher information at a given
total energy α2, split differently between the displacement
and the squeezing: the addition of squeezing rapidly
degrades the informational content of the measurement,
as we were expecting from the analysis of the DPFs.
We observe that, by using this scheme, it is possible to

postselect events at a fixed photon number showing
enhanced fringes, as is the case for N00N states [33].
However, since postselection only occurs with a fixed
probability, the Fisher information associated with these
events cannot exceed the total information [34–36]; the
main advantage of this postselection technique consists of
choosing the events carrying the most information (see also
Ref. [37] for a discussion of different figures of merit).
Conclusions.—We have introduced a new approach to

the optimization of probe states for parameter estimation in
the presence of a detector whose exact response is
unknown. It offers a computational advantage with respect
to the standard approach based on detector tomography,
although, in the absence of regularization, suitable filters
have to be applied.
In addition, we have shown how this formalism also

provides an agile theoretical description of continuous-
variable measurement devices, and we have illustrated its
use for a weak-field homodyne. This also has potential for
applications for experimental characterization, but it should
be adapted to the availability of a limited number of states to
be used [16].
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