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The problem of finding a marked node in a graph can be solved by the spatial search algorithm based on
continuous-time quantum walks (CTQW). However, this algorithm is known to run in optimal time only for
a handful of graphs. In this work, we prove that for Erdös-Renyi random graphs, i.e., graphs of n vertices
where each edge exists with probability p, search by CTQW is almost surely optimal as long as
p ≥ log3=2ðnÞ=n. Consequently, we show that quantum spatial search is in fact optimal for almost all
graphs, meaning that the fraction of graphs of n vertices for which this optimality holds tends to one in the
asymptotic limit. We obtain this result by proving that search is optimal on graphs where the ratio between
the second largest and the largest eigenvalue is bounded by a constant smaller than 1. Finally, we show that
we can extend our results on search to establish high fidelity quantum communication between two
arbitrary nodes of a random network of interacting qubits, namely, to perform quantum state transfer, as
well as entanglement generation. Our work shows that quantum information tasks typically designed for
structured systems retain performance in very disordered structures.
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Quantum walks provide a natural framework for tackling
the spatial search problem of finding a marked node in a
graph of n vertices. In the original work of Childs and
Goldstone [1], it was shown that continuous-time quantum
walks can search on complete graphs, hypercubes, and
lattices of dimensions larger than four in Oð ffiffiffi

n
p Þ time,

which is optimal. More recently, new instances of graphs
have been found where the spatial search works optimally.
These examples show that global symmetry, regularity, and
high connectivity are not necessary for the optimality of the
algorithm [2–4]. However, it is not known how general the
class of graphs is for which the spatial search by quantum
walk is optimal. Here we address the following question: If
one picks at random a graph from the set of all graphs of n
nodes, can one find a marked node in optimal time using
quantum walks? We show that the answer is almost surely
yes. Moreover, we adapt the spatial search algorithm to
protocols, for state transfer and entanglement generation
between arbitrary nodes of a network of interacting qubits,
that work with high fidelity for almost all graphs, for large
n (nodes and vertices are used interchangeably throughout
the Letter). Thus, besides showing that spatial search by
quantum walk is optimal in a very general scenario, we also
show that other important quantum information tasks,
typically designed for ordered systems, can be accom-
plished efficiently in very disordered structures.
We obtain our results by studying the spatial search

problem in Erdös-Renyi random graphs, i.e., graphs of n
vertices where an edge between any two vertices exists with
probability p independently of all other edges, typically
denoted as Gðn; pÞ [5,6]. Note that our approach is

different from the quantum random networks of noninter-
acting qubits defined in Ref. [7], where two nodes are
connected if they share a maximally entangled state, having
in view long-distance quantum communication. Also, in
Refs. [8,9], the authors compare the dynamics of classical
and quantum walks on Erdös-Renyi graphs and other
complex networks, although with a different perspective
from our work.
In our work, we show that search is optimal on Gðn; pÞ

with probability that tends to one as n tends to infinity, as
long as p ≥ log3=2ðnÞ=n. It can be demonstrated that when
p ¼ 1=2,Gðn; 1=2Þ is a graph picked at random from the set
of all graphs of n nodes in an unbiased way; i.e., each graph
is picked with equal probability. This allows us to conclude
that spatial search by quantum walk is optimal for almost
all graphs from this set. To obtain this result, we prove a
sufficient condition regarding the adjacency matrix of graphs
where search is optimal: the eigenstate corresponding to its
largest eigenvalue must be sufficiently delocalized and the
ratio between the second largest and the largest eigenvalues
must be bounded by a constant smaller than 1.
This general result also allows us to prove that search is

optimal for graphs sampled uniformly from the set of all
regular graphs, also known as random regular graphs. Thus,
this leads us to conclude that spatial search by quantum
walk is optimal for almost all regular graphs.
A sufficient condition for optimal quantum search.— Let

G be a graph with a set of vertices V ¼ f1;…; ng. We
consider the Hilbert space spanned by the localized quantum
states at the vertices of the graph H ¼ spanfj1i;…; jnig,
and the following search Hamiltonian
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HG ¼ −jwihwj − γAG; ð1Þ
where jwi corresponds to the solution of the search
problem, γ is a real number and AG is the adjacency
matrix of a graph G [1]. We say that quantum search by
continuous time quantum walk is optimal on a graph G if
there is an initial state jψ0i, irrespective of w, and a value
of γ such that after a time T ¼ Oð ffiffiffi

n
p Þ [10], the probability

of finding the solution upon a measurement in the vertex
basis is jhwje−iHGtjψ0ij2 ¼ Oð1Þ. The initial state jψ0i is
usually chosen to be the equal superposition of all
vertices, i.e., the state jsi ¼ P

n
i¼1 jii=

ffiffiffi
n

p
, since it is not

biased towards any vertex of the graph. We start by
proving the following general lemma regarding the
spectral properties of AG and the optimality of search:
Lemma 1: Let H1 be a Hamiltonian with eigenvalues

λ1 ≥ λ2 ≥ … ≥ λk (satisfying λ1 ¼ 1 and jλij ≤ c < 1 for
all i > 1) and eigenvectors jv1i ¼ jsi, jv2i;…; jvki and let
H2 ¼ jwihwj with jhwjsij ¼ ϵ. For an appropriate choice of
r ¼ Oð1Þ, applying the Hamiltonian ð1þ rÞH1 þH2 to
the starting state jv1i ¼ jsi for timeΘð1=ϵÞ results in a state
jfi with jhwjfij2 ≥ ð1 − cÞ=ð1þ cÞ − oð1Þ.
Proof: See Sec. I in the Supplemental Material [11].
Thus, if λA1 ≥ λA2 ≥ … ≥ λAn are the eigenvalues of the

adjacency matrix AG, we choose γ ¼ 1=λA1 and, conse-
quently, H1 ¼ γAG. If jsi is an eigenstate of AG correspond-
ing to its largest eigenvalue λA1 , and since jhwjsij ¼ 1=

ffiffiffi
n

p
,

we have that search is optimal as long as λA2=λ
A
1 ≤ c < 1,

following Lemma 1. We will see that Erdös-Renyi graphs
and random regular graphs fulfill this property, leading to the
conclusion that search is optimal for almost all graphs and
also for almost all regular graphs (the latter is discussed in
Sec. II of the Supplemental Material [11]).
In fact, Lemma 1 implies that for any regular graph having

a constant normalized algebraic connectivity, quantum
search is optimal [14]. This is in contrast to Ref. [4] where
two examples of regular graphs [15] with low normalized
algebraic connectivity are given, such that quantum search is
optimal on one and nonoptimal on the other. This result
showed that normalized algebraic connectivity is not a
necessary condition for fast quantum search: when con-
nectivity is low, search can be fast or slow depending on the
graph. On the other hand, Lemma 1 proves that high
connectivity is indeed a sufficient condition.
Quantum search on Erdös-Renyi random graphs.— Let

us consider a graph GðnÞ with a set of vertices
V ¼ f1;…; ng. We restrict ourselves to simple graphs,
i.e., graphs which do not contain self-loops or multiple
edges connecting the same pair of vertices. The maximum
number of edges that a simple graph GðnÞ can have is
N ¼ ðn

2
Þ. Thus, there are ðNMÞ graphs of M edges and the

total number of (labeled) graphs is
P

N
M¼0ðNMÞ ¼ 2N [16].

Now let us consider the random graph model Gðn; pÞ, a
graph with n vertices where we have an edge between any
two vertices with probability p, independently of all the

other edges [5,6,17]. In this model, a graph G0 with M
edges appears with probability PfGðn; pÞ ¼ G0g ¼
pMð1 − pÞN−M. In particular, if we consider the case
p ¼ 1=2, each of the 2N graphs appears with equal
probability P ¼ 2−N. In their seminal papers, Erdös and
Renyi introduced this model of random graphs and studied
the probability of a random graph to possess a certain
property Q [5,6]. They studied properties like connected-
ness of the graph, the probability that a certain subgraph is
present, etc. They introduced the terminology stating that
almost all graphs have a property Q if the probability that
a random graph Gðn; pÞ has Q goes to 1 as n → ∞.
Equivalently, it can be stated that Gðn; pÞ almost surely has
property Q. Interestingly, certain properties of random
graphs arise suddenly for a certain critical probability
p ¼ pc, where this probability depends typically on n.
More precisely, if pðnÞ grows faster than pcðnÞ, the
probability that the random graph has property Q goes
to 1 in the asymptotic limit, whereas if it grows slower than
pcðnÞ it goes to 0. For example, above the percolation
threshold, i.e., when p > logðnÞ=n the graph is almost
surely connected, whereas if p < logðnÞ=n the graph has
almost surely isolated nodes.
In this work, we are interested in the threshold value of p

for which quantum search becomes optimal; i.e., a marked
vertex from the graph can be found in Oð ffiffiffi

n
p Þ time. We

consider the search Hamiltonian in Eq. (1) for Erdös-Renyi
random graphs HGðn;pÞ ¼ −jwihwj − γAGðn;pÞ. In order to
apply Lemma 1 we need to know the largest eigenvalue of
AGðn;pÞ, which we denote as λA1 , its corresponding eigen-
state jv1i and the second largest eigenvalue of AGðn;pÞ
denoted as λA2 . It was shown in Ref. [18] that the highest
eigenvalue λA1 is a random variable whose probability
distribution converges to a Gaussian distribution with mean
np and standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − pÞp

, as n → ∞. The
corresponding eigenstate, jv1i tends almost surely to
jsi ¼ 1=

ffiffiffi
n

p P
n
i¼1 jii. For a more detailed analysis of the

convergence of jv1i to jsi, refer to Lemma 2 in Sec. III of
the Supplemental Material [11]. It is also possible to obtain
an upper bound on the second highest eigenvalue, λA2 from
the results of Ref. [18] which applies to random symmetric
matrices. In fact in Ref. [19], a tighter bound on λA2 is
provided as n → ∞, given by

λA2 ¼ 2
ffiffiffiffiffiffi
np

p þO(ðnpÞ1=4 logðnÞ): ð2Þ

We see that as long as p ≥ log4=3ðnÞ=n, the ratio λA2=λ
A
1 is

bounded by a constant. However, as can be seen in Sec. III
of Supplemental Material [11], in order to ensure that jv1i
converges to jsi, almost surely, we choose the critical value
of probability for search to be optimal as p ≥ log3=2ðnÞ=n.
In fact, in the asymptotic limit, λA2=λ

A
1 → 0, and the

eigenstates corresponding to the two lowest eigenvalues
of HGðn;pÞ are
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jλ�i ≈
jwi � jsw̄iffiffiffi

2
p ; ð3Þ

where jsw̄i is the equal superposition of all the vertices other
than the solution state jwi. The probability of success is

PwðtÞ ¼ jhwj expð−iHGðn;pÞtÞjsij2 ¼ sin2
�

tffiffiffi
n

p
�
: ð4Þ

To confirm these theoretical predictions we plot, on the left
side of Figs. 1(a)–1(c), the approximate probability PwðtÞ
from Eq. (4) (in red) and the exact solution calculated
numerically (in blue) for n ¼ 1000 and p ¼ 0.1, 0.01,

0.002. On the right side, we plot the spectrum of the
respective Hamiltonians. We observe, as expected, that
the larger the gap between the two lowest eigenvalues
and the bulk of the spectrum, the better is the approximation
given by Eq. (4) for the probability of success of search. As
this gap disappears, close to the percolation threshold, the
eigenstates corresponding to the two lowest eigenvalues do
not follow Eq. (3) and will mix randomly with the subspace
orthogonal to jwi and jsw̄i. At this point, since we are close
to the percolation threshold, the graph is expected to have
some isolated components and the algorithm breaks [see
Fig. 1(c)].
So far we have made the choice γ ¼ 1=λA1 , and assumed

that we know the value of the random variable λA1 . In fact,
its standard deviation is small enough so that it is
sufficient to know its mean, which is equal to np, i.e.,
we can choose γ ¼ 1=ðnpÞ, in order to prove that search is
optimal almost surely. We prove this in Sec. IV of the
Supplemental Material [11], using tools of degenerate
perturbation theory. These tools are also useful to design
protocols for performing optimal state transfer and entan-
glement generation in Erdös-Renyi graphs, as will be
explained subsequently.
State transfer with high fidelity.—Quantum state transfer

in spin chains [20] and spin networks [21] has been
proposed as a way to establish short-range quantum
channels. The problem of what structures lead to high
fidelity state transfer has been of wide interest [21–23].
Here we show that it is possible to transfer, with low control
and high fidelity, a quantum state between two arbitrary
nonadjacent nodes of a random network (namely, an Erdös-
Renyi random graph). The Hamiltonian of a network of
coupled spins, with an XX type interaction, conserves the
number of excitations and so, in the single excitation
subspace, the Hamiltonian is that of a single particle
quantum walk on the same network. The graph Gðn; pÞ
can be perceived as a communication network where each
node represents a party that transfers information to any of
the other nodes. We assume that each party has access to a
qubit and can control the local energy of the corresponding
node. In order to transfer a state from node i to j, with
fidelity that tends to 1 in the asymptotic limit, the strategy is
the following: all qubits are initially in state j0i, which is an
eigenstate of the network; the sender (corresponding to
node i) and the receiver (corresponding to node j) can tune
the respective site energies of jii and jji to −1, thereby
making jii, jji, and jsi approximately degenerate. Finally,
in order to transfer a qubit from i, the sender performs a
local operation on her qubit to prepare jψi ¼ αj0i þ βj1i.
As long as p ≥ log3=2ðnÞ=n, the approximate dynamics of a
quantum walk starting at jii is obtained by diagonalizing
the Hamiltonian

H0
Gðn;pÞ ¼ −jiihij − jjihjj − jsījihsījj − γA0

Gðn;pÞ ð5Þ

FIG. 1. Left side: probability of observing the solution calcu-
lated numerically (blue curve) compared to the prediction from
Eq. (4) (red curve), obtained in the limit n → ∞, using degenerate
perturbation theory. We fix the number of vertices n ¼ 1000 and
p ¼ 0.1, 0.01, and 0.002 in (a),(b), and (c), respectively. Right
side: Spectrum of the search Hamiltonian for instances of random
graphs that provide the dynamics represented on the left side. In
red, the two lowest eigenvalues are shown in (a) and (b), which
are clearly isolated from the rest of the spectrum shown in blue. In
(c) this does not happen since p is close to 1=n, which is the
percolation threshold and thus the semicircle law is not valid. We
see that the larger the gap between the two lowest eigenvalues λ�
and the rest of the spectrum the better is the prediction from
Eq. (4) for the probability of success. When the two lowest
eigenvalues are not isolated, the probability of observing the
solution is low and the algorithm does not provide speed-up with
respect to classical search.
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projected onto the approximately degenerate subspace
spanned by fjii; jsīji; jjig, which is given by

H0
Gðn;pÞ ¼

2
64

−1 −1= ffiffiffi
n

p
0

−1= ffiffiffi
n

p
−1 −1= ffiffiffi

n
p

0 −1= ffiffiffi
n

p
−1

3
75; ð6Þ

with jsīji ¼
P

k≠i;jjki=
ffiffiffiffiffiffiffiffiffiffiffi
n − 2

p
and jsīji ≈ jsīi ≈ jsi, where

we assume that i and j are nonadjacent vertices. Thus, the
dynamics is approximately the same as that of end-to-end
state transfer in a chain with three spins, where perfect state
transfer is possible [23] and the component of the wave
function at the receiver is approximately jhjjUðtÞjiij2 ¼
sin2ðt= ffiffiffiffiffiffi

2n
p Þ. Hence, after time T ¼ π

ffiffiffiffiffiffiffiffi
n=2

p
, the receiver

gets jψiwith fidelity 1, in the limit n → ∞ (see Fig. 2 for an
example with finite n). The receiver can preserve this state
for future use by tuning the energy of node j, locally, to a
value that is off-resonant with the rest of the network [24].
We conclude that high fidelity quantum state transfer can be
achieved in almost all networks.
Creating Bell pairs in a random network.— In quantum

communication networks, entanglement is an useful re-
source that can be used for various tasks such as telepor-
tation, superdense coding, cryptographic protocols, etc [25].
Here, we present a protocol to entangle arbitrary nodes in a
random network based on the search Hamiltonian. Imagine
that Charlie at node jwiwants to entangle the qubits of Alice
at node jai and of Bob at node jbi. We assume that none of
the nodes jwi, jai, and jbi are adjacent to each other. As
before, γ is chosen to be 1=ðnpÞ. In this case, the protocol is
as follows: (i) Alice, Bob, and Charlie tune their respective
site energies to −1, (ii) Charlie tunes his nearest neighbor
couplings to

ffiffiffi
2

p
=dC, where dC is the degree of the node

corresponding to Charlie, while the other couplings in the
graph are γ ¼ 1=np. This ensures that the Hamiltonian,
projected onto the approximately degenerate subspace
spanned by jwi, jswabi ¼

P
k≠a;b;wjki=

ffiffiffiffiffiffiffiffiffiffiffi
n − 2

p
and jsabi ¼

ðjai þ jbiÞ= ffiffiffi
2

p
, is equal to

H0
Gðn;pÞ ¼

2
64

−1 −
ffiffiffiffiffiffiffiffi
2=n

p
0

−
ffiffiffiffiffiffiffiffi
2=n

p
−1 −

ffiffiffiffiffiffiffiffi
2=n

p
0 −

ffiffiffiffiffiffiffiffi
2=n

p
−1

3
75; ð7Þ

in the asymptotic limit [26]. Thus, after time T ¼ π
ffiffiffi
n

p
=2,

Alice and Bob share the state jsabi ¼ ðjai þ jbiÞ= ffiffiffi
2

p
,

which is a Bell state. Subsequently, other Bell states may
be obtained by local operations. Furthermore, Alice and Bob
can preserve their Bell state by tuning the local energies of
their qubits to a value that is off-resonant with the other
eigenvalues of the network.
Discussion.— We have shown that searching for a

marked node in a graph using continuous-time quantum
walks works optimally for almost all graphs. This means
that, in terms of the structures on which it performs
optimally, this approach to quantum spatial search is much
more general than what has been shown before. Our result
was obtained by proving that the algorithm is almost surely
optimal for Erdös-Renyi random graphs Gðn; pÞ, as long
as p ≥ log3=2ðnÞ=n.
As pointed out in Ref. [1], the analog version of Grover’s

algorithm of Ref. [10] can be seen as a quantum walk on the
complete graph. Furthermore, the Erdös-Renyi random
graph Gðn; pÞ can be obtained from the complete graph
by randomly deleting edges with probability 1 − p. Thus,
our result can also be interpreted as showing an inherent
robustness of the analog version of Grover’s algorithm to
edge loss. This implies that there is a large family of
random Hamiltonians that can be employed to achieve
optimal quantum search. Hence, our work paves the way to
understanding how this randomness would translate to the
circuit model of quantum search and whether this implies
an inherent robustness of the (standard) Grover’s algorithm.
Finally, we have shown that one can adapt the spatial

search algorithm to design protocols for quantum state
transfer and for entanglement generation between arbitrary
nodes of a random network of interacting qubits. Our results
show that quantum information tasks typically designed for
structured systems retain performance in very disordered
structures. These results could lead to further investigation on
what kind of random structures appear naturally in physical
systems (for example, those appearing in Refs. [27,28]) and
whether they would offer a sufficient spectral gap to perform
efficient and robust quantum information tasks. It would also
be interesting to explore whether nontrivial quantum infor-
mation tasks can be performed on other models of random
networks such as scale-free networks [29].
Note added.—Recently we became aware of Refs. [30,

31] where the spatial search algorithm has been adapted for
quantum state transfer in regular lattices.
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FIG. 2. Quantum state transfer in the Erdös-Renyi random
graph Gð100; 0.2Þ: using our protocol, the fidelity achieved for
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