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The interplay between single-particle interference and quantum indistinguishability leads to signature

correlations in many-body scattering. We uncover these with a semiclassical calculation of the transmission

probabilities through mesoscopic cavities for systems of noninteracting particles. For chaotic cavities we

provide the universal form of the first two moments of the transmission probabilities over ensembles of

random unitary matrices, including weak localization and dephasing effects. If the incoming many-body

state consists of two macroscopically occupied wave packets, their time delay drives a quantum-classical

transition along a boundary determined by the bosonic birthday paradox. Mesoscopic chaotic scattering of

Bose-Einstein condensates is, then, a realistic candidate to build a boson sampler and to observe the

macroscopic Hong-Ou-Mandel effect.
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In quantum mechanics, identical particles are indistin-
guishable and their very identity is, then, affected by
quantum fluctuations and interference effects. A prominent
type of many-body (MB) correlations is exemplified by the
celebrated Hong-Ou-Mandel (HOM) effect [1], by now the
standard indicator of MB coherence in quantum optics.
There, the probability of observing two photons leaving in
different arms of a beam splitter is measured. As a function
of the delay between the arrival times of the incoming
pulses, the coincidence probability shows a characteristic
dip that can be seen as an effective quantum-classical
transition (QCT), where the difference in arrival times
dephases the MB interference due to quantum indistin-
guishability [2]. In recent years, a wealth of hallmark
experimental studies of MB scattering has gone beyond this
scenario [3-9]. The aim is to reach a regime where for a
random single-particle (SP) scattering matrix o, and due to
MB interference, the complexity in the calculation of MB
scattering probabilities as a function of ¢ beats classical
computers; this is called the boson sampling (BS) problem
[10]. However, while current optical devices [5,9] reach
photon occupations (below 6) far from the required regime
of large number of particles, it is not clear how to sample ¢
uniformly on platforms based on trapped ions [11], cold
atoms [12], and spin chains [13].

Here we study mesoscopic MB scattering of massive
particles depicted in Fig. 1(a). While formally identical to
the optical situation in that it relates SP scattering matrices
with MB scattering probabilities, it allows for large
occupations through, e.g., Bose-Einstein condensation.
Moreover, a standard result from quantum chaos [14] says
that complex SP interference due to classical chaos inside
such a mesoscopic scattering cavity € transforms averages
over small changes of the incoming energies into averages
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over an appropriate ensemble of unitary matrices, thus
providing a genuine sampling over random scattering
matrices. With experimental techniques for preparation
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FIG. 1. (a) Two bosonic wave packets with mean velocity v,
transversal channels a = (ay, a,), and width s = vz, approach the
chaotic cavity  with mean position difference z = vz. (b) Ratio
(P))/(P)), between the quantum and classical probabilities
(averaged over mesoscopic fluctuations), to find the bosonic
particles in different output channels b. Left: For singly occupied
wave packets, n =2 (with N =4 channels), we observe a
generalized HOM profile that changes from Gaussian (dotted)
to a universal exponential (thin solid tails) as function of the
cavity’s dwell time 7,4, with z7;/7, = 0.1, 2.5, 5 (solid blue, dashed-
dotted yellow, dashed red) [Egs. (10)—(12) with z = z;,]. Right:
Forn — oo, N = an’, <P(+)) reaches its classical limit if # > 2 or
trivially saturates due to the bosonic birthday paradox (BBP) for
n < 2. For n =2, the quantum-classical transition shows an
exponentiated HOM-like profile [Eq. (16) with x =0, a = 1].
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of coherent macroscopic occupations [15], chaotic scatter-
ing [16], and detection [17], mesoscopic scattering of Bose-
Einstein condensates contains all prerequisites of a realistic
platform for BS, its certification [18], and related tasks [19].
This is illustrated with the recent realization of the two-
particle HOM effect using atomic beam splitters in [22].

Because the methods developed for the study of MB
scattering of photons [23-27] ignore mesoscopic effects
and physical scales like the cavity’s dwell time, we fill this
gap and present analytic results on coherent MB scattering
in the mesoscopic regime, particularly the way the QCT is
affected by large occupation numbers and mesoscopic
fluctuations. Supported by the universal correlations of
SP scattering matrices [28,29] responsible for characteristic
mesoscopic wave interference effects like weak localization
[30] and universal conductance fluctuations [31], we
address the emergence of universal MB correlations due
to the interplay between classical ergodicity, SP interfer-
ence, and quantum indistinguishability well beyond the
standard semiclassical SP picture (see, for instance, [32]).
Despite their intrinsically nonclassical character, here MB
correlations are successfully expressed and computed
within a semiclassical approach in terms of interfering
SP classical paths in the spirit of the Feynman path integral
[33] by a one-to-one correspondence between MB classical
paths (illustrated in Fig. 2) and terms of the expansion of
the MB scattering probabilities. Our complete enumeration
and classification of the MB paths allows for an explicit
analysis of emergent phenomena in the thermodynamic
many-particle limit, something out of reach of leading-
order random matrix theory (RMT) methods [34-36].

We also show here how mesoscopic dephasing effects
encoded in the dwell time lead eventually to a universal HOM
profile, and provide a mesoscopic approach to the BBP that
constrains the experimental realization of BS due to a
counterintuitive scaling of coincidence probabilities with
the density of particles [37]. Our methods can be extended to
the optical case by using the dispersion relation for photons
and changing the cavity Q to a multiport waveguide network,
making a connection with recent experiments [6-9].

The setup of the mesoscopic many-body scattering
problem is depicted in Fig. 1(a). The incoming particles
(i=1,...,n) with positions (x;,y;) occupy SP states
represented by normalized wave packets
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The longitudinal wave packets e~**X(x — z) have variance
52, mean initial position z > s, and approach the cavity Q
with mean momentum 7k = mv > 0 along the longitudinal
directions —x;. The relative positions of the incoming
particles are then parametrized by the differences z;; =
z; —z; or delay times 7;; = z;;/v. The transverse wave
function in the incoming channel a; € {1,...,N/2} is
Xa,(y:) and has energy E,, assumed for simplicity to be
identical for all channels.

If the particles are identical, quantum indistinguishability
demands their joint state to be symmetrized according to
their spin [38]. Introducing ¢ = —1(+41) for fermions
(bosons), the symmetrized amplitude to find the particles
leaving in channels b = (by,...,b,) with energies E =
(Ey,...,E,) is given by a sum over the action of the n!
elements P of the permutation group,

AL (E)

a,

= ZepAa,Pb(PE>’ (2)

P
on the scattering amplitude for distinguishable particles,
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where hg; = /2m(E; — E,) and X(k) = [ e ™X(x)dx.
When n =1, Eq. (3) formally defines the SP scattering
matrix o, ,(E) connecting the incoming and outgoing
channels a and b. With these definitions, the MB proba-
bility to find the particles leaving in channels b but
regardless of their energies is given by

Qi)o'b,-.a,-(Ei)’ (3)
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Equation (4) includes the normalization factors
= [[;mul(0;)!, where mul(o;) is the multiplicity of
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FIG. 2. Sets of interfering SP paths required for calculating MB transition probabilities, here for n = 5. In (a), both SP and MB
correlations are neglected. In (c), weak localization at the SP level is included. For (b), (d), (e), and (f) only MB correlations are included.
Combined SP and MB effects appear when the links in a MB diagram are decorated with SP loops.
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Because of interference between different (P # P')
distinguishable MB configurations, PE:{, is sensitive to
the relative positions of the incoming wave packets z;;.
This dependence drives a transition from indistinguish-
ability to effective distinguishability for z;; - co. MB
interference due to indistinguishability is thus intrinsically
dephased, and one observes an effective QCT [8,9], as seen
from the HOM scenario [1] where ¢ is E independent and
2n =4 = N. In this case we get, using Eq. (4),

le]l?+1 . [le]] =1
legél\fz,blgébz = 3 +e > Fz12), (5)
where [- - -] denotes permanent (unsigned determinant) and
F@) = [ x(x(x- 2, (©

satisfying F(0) =1, F(o0) =0, is responsible for the
nonuniversal profile of the QCT, as shown in the dotted
curve in the left panel of Fig. 1(b) for Gaussian wave
packets.

Individual ¢ matrices with specific entries leading to
Eq. (5) and its few-particle generalizations are routinely
constructed in arrays of beam splitters connecting wave-
guides for photonic systems [6,7,24,25] and in quantum
point contacts for electrons occupying edge states [39,40].
Thanks to the Bohigas-Gianonni-Schmidt conjecture,
replacing the beam splitter or point contact by a chaotic
mesoscopic cavity allows us to sample the moments
(f(c)#) of any observable f(o) over the full ensemble
of random, unitary matrices o by sampling over energy
windows or small variations of the cavity [14]. In this case,
averages of the form (¢}, ,(E)o}, ,(E')) display universal
features depending only on the presence or absence of time-
reversal invariance, denoted as the orthogonal (f = 1) and
unitary (f = 2) case. Interference effects in SP scattering
probabilities are semiclassically understood in terms of
statistical correlations among classical actions [28-31,41]
and here we generalize these methods.

We will mainly focus on the case, denoted by b, where
every output channel is singly occupied; for f = 1 we also
demand that the in- and outgoing channels are different. In our
approach, any 2nu-order correlator of ¢ matrices appearing in

the moments <|P£€L(E) |*#) of the distribution of scattering
probabilities, Eq. (4), is given by an infinite diagrammatic
expansion with terms that can be visualized as a set of links

joining nu in and outgoing channels, see Fig. 2. For the
averaged transition probability, 4 = 1, the classical limit

(PE)) = (n!/bIN", (7)

for general b, is obtained from the trivial topology in Fig. 2(a)
[42]. In Eq. (7), N is the number of open channels at the mean
initial SP energy U = mv?/2 + E,. Quantum effects at the
SP level, in the spirit of [29,30], give the sole contribution for

P = P’ in Eq. (4) and are generated by adding SP loops to the
links, as in Fig. 2(c). These terms, independent of ¢, can be

evaluated up to infinite order to give (with (Pﬁi) =nIN"")

(PSY) = (PEI1 = (1=2/B)/N]™. (8)

To calculate <P£€L) we must include genuine MB effects
characterized by correlations between different SP paths,
‘P # P'. The first MB diagrams without SP loops are depicted
in Figs. 2(b),2(d), and 2(e), while Fig. 2(f) shows the diagram
in Fig. 2(b) with a loop between two particles. The basic
correlator in Fig. 2(b) involving a single pair of correlated
paths is [31,43]

(00,0, (Ei)0p,.0,(E})0}, o (Ej)oy o (7))
1 h? 1
- o), 9
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where 7, is the dwell time, the average time a particle with
energy (E; + E;)/2 remains within Q. Taking into account
only pairs of correlated paths, Eq. (4) gives [44]

(Piy) _(Pay) e 1
L -2y 0% + 0 ) (10)
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with the generalized overlap integral Eq. (6),
[e+] e_ltl/fd
Q¥(z) = / F(z - ot) dt. (11)
—0o 2Td

In order to study the impact of mesoscopic effects in the HOM
scenario we take n = 2, and the sumin our Eq. (10) reduces to
a single contribution with i = 1, j = 2. In the left panel of

Fig. 1(b) we plot (P{})/(P¢.,) as function of the mismatch

distance z = z;, between the incoming wave packets in the
case of broken time-reversal invariance where Eq. (8) gives

<P(sb)> = <P<adg> We see how mesoscopic effects produce
universal deviations from the usual Gaussian profile, repre-
sented by the dotted line.

The functions Q@ determine how the mismatch of
arrival times dephases the MB correlations. We interpret
Egs. (10), (11) as follows: Pairs of incoming particles that
are effectively distinguishable get to interfere if their time
delay 7;; in entering the cavity is compensated by the time
74 the first particle is held within the mesoscopic scattering
region. However, the interference gets weighted by the
survival probability e~/%/z, of remaining inside the
chaotic scatterer Q. Universality of the dephasing of MB
correlations is expected if 7, competes with the delay times
7;; and widths 7, = s/v of the incoming wave packets, and
leads to exponential tails in the interference profile for
|z;j| > 5. As shown in the left panel of Fig. 1(b), these

exponential regions grow with the ratio z,/7; for 7, < 7,
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on the other hand, QCT depends on the shape of the
incoming wave packets, as in Eq. (5),

vy vn > k(5P E) S

- (12)

vty > vty > kU F2(2).

_— =

o) (z)

Mesoscopic dephasing of two-particle interference plays
a fundamental role in the thermodynamic limit N, n — oo
of the QCT through the mesoscopic version of the BBP
[37], which constrains the scaling N = an’ in such a way
that (P;‘SL) does not get trivially saturated either classically
or by quantum bunching and antibunching [3,10,37,45,46].
To achieve a semiclassical theory of the mesoscopic BBP,
in [47] we use RMT techniques to calculate (PE:L) which is
only possible for z;; =0, 7,/7, =0. We obtain the
expression, valid for arbitrary €, N, n, a, b if f =2 and
with the only condition anb =@ if f =1,

7a/T=0 __ W;f) (N’ n>n!

(¢)
P = 6.1+ 6. _6pp), 13
< a,b>|zfj:0 ;,z_(} (N el) ( €+ €, b,g) ( )

with &, , = 1(0) if b is (is not) singly occupied and

Wge)(N,n) B N+en-1)

()
= , N,n) =1.
N+n+e(n-1) Wa (N, n)

(14)

Equation (13) is a generalization for arbitrary f and € of the
bosonic, unitary case reported in [37]. A key observation is
that, contrary to the distinguishable (classical) case
[Eq. (7)], result (13) is constant over the MB final states
for f = 2. SP chaos leads then to full MB equilibration for
systems with broken time-reversal symmetry, providing
dynamical support to the analysis of [37].
For singly occupied states b, Eqgs. (7), (13) give

(e)\\ € 7a/7=0 0 forn <2
P ) n
—< ab) 2 el for n=>2 (15)
cl) N=an'
(Pap)/ 1 1 for n > 2,

showing how, in the thermodynamic limit, scattering of
identical particles is classical in the dilute limit > 2, it
gets saturated due to boson bunching and fermion anti-
bunching even at zero densities if # < 2, and only the
scaling N = an? gives a nontrivial limit. This is the essence
of the BBP [10,37,45,46], here derived from RMT argu-
ments (and for # > 1 from semiclassical arguments) for
arbitrary f, €. For # = 1, weak localization corrections to
MB equilibration (akin to MB coherent backscattering
[48]) to BS and to BBP are obtained from Eq. (13).

To address the interplay between intrinsic (z;; # 0) and
mesoscopic (z;/7, # 0) dephasing, one must go beyond
RMT; we resort to semiclassical diagrammatics. In [49] we

study the semiclassical generating function for <P;€L> and

show that, order by order in the 1/N expansion, diagrams
with pairwise correlations between particles like Figs. 2(b)
and 2(e) dominate the n — oo limit leading to Eq. (15) for
n > 1. The whole set of semiclasssical diagrams with
pairwise correlations can now be constructed for /7, >
0 and z;; # 0, and resumed to infinite order where the
scaling n = 2 emerges [50].

If z;; € {0, z}, a situation that can be realized for bosons
by injecting two wave packets with macroscopic occupa-
tions n(1 £ x)/2, we get [51]

(P,

(Py,

a,

|z —

. o~ (€/4a)[(1422) QD (0)+(1-2) Q2 (2)] (16)

! > N=an?

o=

Remarkably, then, for macroscopically populated incoming
states we observe again a QCT driven by the arrival
difference, with an exponentiated HOM-like profile, as
shown in the right panel of Fig. 1(b) forx =0 and a = 1.

Coming back to finite systems where MB interference is
affected by other types of correlations, the diagram
Fig. 2(d) containing three-body correlations gives

with overlapping and exponential regimes given by

v >vr>k!
—_—

6(3) e—}Max(r,z/.O)/wd e(z+:’)/1r1d

27,/74 2t,/ty (18)
F(2)F(Z)F(z—72)

00 (z,7)

V> vT> k!
JE— -

andC®) = 572 [%_F(2)F(')F(z — 7')dzdz'. As shown in
Fig. 3, this transition produces universal dephasing char-
acterized by kinks with threefold symmetry as a function of
the time delay between incoming particles, consistent with
the correlations measured in [9].

In conclusion, we have presented a semiclassical
approach to quantum scattering for many-body systems
and used it to study the emergence of universal effects due
to the interplay between single-particle classical chaos and
quantum correlations coming from indistinguishability. We
have explicitly constructed the correlations responsible for

Q@) (v7y3,v723)

Q@) (v7y3,v723)

FIG. 3. Transition between the overlapping (z,/7, = 0.1, left)
and the universal exponential (z,/7, = 2, right) regime for the
three-body interference term, Eq. (17).

100401-4



PRL 116, 100401 (2016)

PHYSICAL REVIEW LETTERS

week ending
11 MARCH 2016

many-body interference in mesoscopic scattering and
computed their effect for both small and macroscopically
large occupations in the thermodynamic limit, thus opening
the possibility of translating boson sampling, the bosonic
birthday paradox, and related timely problems into exper-
imentally accessible scenarios of chaotic scattering with
massive particles such as cold atoms, as outlined in the
beginning of this Letter. Single-particle chaos turns out to
be sufficient to achieve many-body ergodicity, and this
allows us to compute mesoscopic corrections to the bosonic
birthday paradox. It leads to a sharp quantum-classical
transition in the thermodynamic limit and, under the scaling
for the quantum-classical boundary, we found an expo-
nentiated form of the Hong-Ou-Mandel profile.

Going beyond the first moment (P) of the distribution of
scattering probabilities, in [52] we further calculate the
leading order of the second moment (P?). In fact, deter-
mining just the leading order of higher moments should be
pertinent for the permanent anticoncentration conjecture
important for boson sampling [10]. Intriguingly, then,
semiclassical diagrams and random matrices open up
new avenues for understanding permanent statistics, while
mesoscopic scattering of massive bosons appears as a
promising candidate for their measurement.

We thank Andreas Buchleitner and Malte Tichy for
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