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Periodic microphases universally emerge in systems for which short-range interparticle attraction is
frustrated by long-range repulsion. The morphological richness of these phases makes them desirable
material targets, but our relatively coarse understanding of even simple models hinders controlling their
assembly. We report here the solution of the equilibrium phase behavior of a microscopic microphase
former through specialized Monte Carlo simulations. The results for cluster crystal, cylindrical, double
gyroid, and lamellar ordering qualitatively agree with a Landau-type free energy description and reveal the
nontrivial interplay between cluster, gel, and microphase formation.
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Microphases supersede simple gas-liquid coexistence
when short-range interparticle attraction is frustrated by
long-range repulsion (SALR). The resulting structures are
both elegant and remarkably useful [1]. Block copolymers
[2–4], for instance, form a rich array of periodic structures,
such as lamellae, gyroid [5,6], and exotic morphologies
[7–11], whose robust assembly enables industrial applica-
tions in drug delivery [12,13] and nanoscale patterning
[14,15], among others. Because microphase formation
constitutes a universality class of sorts [16], many other
systems either exhibit or share the potential to form similar
assemblies [1,17]. In the latter category, colloidal suspen-
sions are particularly interesting. The relative ease with
which interactions between colloids can be tuned indeed
suggests that a broad array of ordered microphases should
be achievable [17]. Yet, in experiments [18–20] only
amorphous gels and clusters have been observed in systems
ranging from proteins [21] to micron-scale beads [22].
A variety of explanations have been advanced to explain

the difficulty of assembling periodic microphases in col-
loids, including a glasslike dynamical slowdown upon
approaching the microphase regime [23,24], the existence
of an equilibrium gel phase [25,26], and the dynamical
arrest of partly assembled structures due either to particle-
scale sluggishness [27–29] or competition between mor-
phologies [30–32]. In order to obtain a clearer physical
picture of these effects and thus hopefully guide exper-
imental microphase ordering, a better understanding of the
relationship between equilibrium statics and dynamics is
needed. Insights from theory and simulation would be
beneficial, but both approaches face serious challenges. On
the one hand, theoretical descriptions, such as the density-
functional theory [2,5,6], self-consistent field theory [33],
random-phase approximation [34,35], and others [26,36],
capture reasonably well the microphase structures, but
corresponding dynamical descriptions are more limited

[24,28,37–39]. On the other hand, the dynamics of par-
ticle-based models has been extensively studied by simu-
lations [25,27,40–42], but our thermodynamic grasp of
these models is rather poor [43–45]. In this Letter, we
introduce the components needed to study the thermody-
namic behavior of microscopic, microphase-forming mod-
els and thus help clarify the interplay between equilibrium
ordering and sluggish dynamics.
Simulations.—The square-well-linear (SWL) model we

study here has a schematic interaction form that can be
smoothly transformed into that of diblock copolymers and
other microphase-forming models. Its radial pair interac-
tion uðrÞ ¼ uHSðrÞ þ uSALRðrÞ includes hard-sphere vol-
ume exclusion uHSðrÞ at the particle diameter σ, which sets
the unit of length, as well as a SALR contribution

uSALRðrÞ ¼
8
<

:

−ε; r < λσ;

ξεðκ − r=σÞ; λσ < r < κσ;

0; r > κσ:

ð1Þ

The square-well attraction strength ε, which sets the unit of
energy, is felt up to λσ; beyond that point, repulsion of
strength ξε takes over and decays linearly. Note that
choosing ξ ¼ 0.05 places the system well above the
Lifshitz point, ξL ¼ 0.025ð5Þ, for the prototypical values
λ ¼ 1.5 and κ ¼ 4 used here [1,46,49,50]. We simulate
systems containing between N ¼ 800 and 8000 particles
under periodic boundary conditions at fixed temperature
T ¼ 1=β (the Boltzmann constant is set to unity), fixing
either pressure p or volume V (and thus number density
ρ ¼ N=V). For each state point, we perform between 105

and 106 Monte Carlo (MC) sweeps, which include non-
standard MC moves [51–54], in order to obtain equilibrium
configurations of the different phases studied [46]. The
results presented here have been first equilibrated and then
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averaged over simulations at least 5 times longer than the
structural relaxation time.
Obtaining equilibrium information about microscopic

SALR particle-based models requires going beyond the
common free energy techniques used for simulating gas,
liquids, and crystals [53], because these techniques fail to
account for the fluctuating occupancy of periodic micro-
phase features [55]. The problem is similar to that encoun-
tered in multiple-occupancy crystals [44] and lattices with
vacancies [56]. We thus consider an expanded differential
form for the Helmholtz free energy per particle [44]:

dfc ¼ −sdT − pdð1=ρÞ þ μcdnc; ð2Þ

in which the standard thermodynamic contributions,
including the entropy per particle s, are complemented
with a field μc that is conjugate to the microphase
occupancy nc [46]. (This last quantity is generally propor-
tional to the number of particles per period, but, for
convenience, its specific definition here depends on the
phase symmetry, e.g., area density ϱl for lamellae of
periodicity l, line density for cylinders and average cluster
size nC for cluster crystals.) Because in the thermodynamic
N → ∞ limit μc must vanish at equilibrium, optimal finite-
size estimates have μc ¼ 0. Standard simulation schemes
cannot, however, directly minimize this function because of
the incommensurability between the mesoscale patterns
and the simulation box in finite size system [44,57]. Hence,
we first obtain the constrained free energy fc of a given
microphase morphology at a given (T, ρ) state point and
fixed nc through a two-step thermodynamic integration (TI)

scheme: (i) from an ideal gas to a liquid of hard spheres
under a modulated field and (ii) from this last state to SWL
particles without a field. The resulting constrained free
energy is then optimized with respect to nc (Fig. 1) [46].
Phase diagrams.—The common tangent construction is

used to obtain the coexistence boundaries between different
phases and thus the overall phase diagram (Fig. 2). As
expected, at high T the system is disordered, while at low T
equilibrium microphases form. Four different ordered
microphase morphologies are identified for ρ≲ 0.45:
face-centered cubic (fcc) cluster crystal, cylindrical, double
gyroid, and lamellar phases (see depictions in Fig. 2 and
symmetry details in Ref. [46]). Although a Landau func-
tional calculation for simple microphase formers suggests
that a body-centered cubic (bcc) cluster crystal phase might
also form [17,58], we found this structure to be only
metastable in our system. The absence of the bcc symmetry
suggests that the effective repulsion between clusters is
harsher than 1=r8 [59–61], which a Hamaker-like calcu-
lation confirms [46]. This morphology thus appears to be
more sensitive than others to the form of the interaction
potential. The other microphase morphologies considered,
i.e., O70 [9], P-surface [62], ordered bicontinuous double
diamond [63], and perforated lamellae [6], were all found
to be unstable within the regime studied.
The highest temperature at which periodic microphases

melt is the weakly first-order, order-disorder transition
(ODT) [1,2]. This transition replaces the second-order gas-
liquid critical point for systems beyond theLifshitz point, i.e.,
for ξ > ξL [16,46]. Melting of the periodic lamellae at TODT
is monitored by the decay of the order parameter

FIG. 1. Two-step TI for the lamellar phase at T ¼ 0.3 and ρ ¼ 0.4. Projections on the xz plane of the coarse-grained number density
ρðrÞ and external field profiles F ðrÞ for (a) ρ ¼ 0 with field F ðrÞ ¼ F 0 cosð2πz=lÞ, where F 0 ¼ 2 and l ¼ 5.25, (b) ρ ¼ 0.4 with a
field, and (c) ρ ¼ 0.4 without a field. Summing the TI results for the equation of state from (a) to (b) with those from the alchemical
transformation in δ from (b) to (c) [46]—in (d) and (e), respectively—gives the free energy constrained to a given area density ϱl ¼ ρl
[46]. (f) From the minimum of a quadratic fit (dashed lines) to fc (points), we obtain the equilibrium thermodynamic f at l ¼
ϱl=ρ ¼ 5.05 (large dot).
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AðTÞ ¼ 1

N
Sðk�;TÞ; ð3Þ

where k� is the low-k maximum of the structure factor
Sðk;TÞ. In our model, this transition occurs roughly halfway
through the lamellar regime, at ρ ≈ 0.35. Because ϱl, and
thus l, is fairly independent of temperature in this regime
[Fig. 3(a)], we use the T ¼ 0.3 value of k� ≈ 2π=l to study
the decay of AðTÞ. Simulation results indicate that, although
away from the transition the order parameter behaves nearly
critically,AðTÞ vanishes discontinuously atTODT¼0.535ð5Þ
[Fig. 3(b)]. Mechanistically, upon going through the tran-
sition, lamellae become increasingly flexible, giving rise to a
percolated network, as observed in diblock copolymers [64].
At low temperatures, clusters form upon increasing

density even before the onset of periodic microphase
ordering, as reported in prior simulations and experiments
[21,40]. The fluid equation of state allows us to locate the
onset of clustering, which is akin to determining the critical
micelle concentration (cmc) in a surfactant system [46].
Increasing T along this line decreases the average cluster
size n̄cmc [Fig. 3(c)], and the last hints of a cmc vanish
around T ¼ 0.72ð1Þ [46]. Even within the fluid of clusters,
the intracluster cohesion is relatively weak, resulting in the
clusters’ internal structure to also be fluidlike. This
behavior contrasts with the crystallites observed in systems
with shorter attraction ranges [27], but lowering the
temperature may also lead to internally ordered clusters

in this system. In spite of their internal fluidity, the clusters
are not generally spherical, and their asphericity increases
with ρ [46]. For T ≳ 0.45, they even become wormlike and
eventually percolate [46,65], which gels the system (see
below) before the first-order transition into the periodic
microphase regime is reached. This behavior is similar to
that observed in Refs. [18,40] but contrasts with that of
Ref. [27], where the percolating network was instead
associated with incompletely ordered cylinder or lamellar
phases. For T ≲ 0.45, by contrast, cluster elongation is
preempted by the microphase regime. Although this last
transition is reminiscent of the crystallization of purely
repulsive particles, the clusters in the fluid phase are larger
[Fig. 3(d)] and display a much wider range of sizes and
morphologies than those in the fcc-cluster crystal [44,46].
The fcc-cluster crystal assembly is thus expected to be more
intricate than simple nucleation and growth.
We finally consider the percolated regime observed at

temperatures above the periodic microphase regime. At
T ≫ TODT the system behaves like a regular fluid, but as T
approaches TODT the structural relaxation grows increas-
ingly complex, even under the strongly nonlocal MC
sampling we use here (Fig. 4): (i) Particles at the surface
are a lot more mobile than those in the core [66,67], and
(ii) edges of the network reorganize much faster than its
nodes. Being in equilibrium, the system does not age, but
MC sampling is nonetheless arduous [46], making the

FIG. 2. Summary (a) T − ρ and (b) p − T phase diagrams indicating the first-order (empty symbols) and the order-disorder transition
(solid circle) as well as the cmc (solid triangles) and percolation (solid diamonds) lines. Errors are comparable to the symbol sizes,
striped areas correspond to coexistence regimes, and lines are guides for the eye. Clausius-Clapeyron results for the slope of the
coexistence line (dashed lines) validate the numerical results in (b). Sample average density profiles for the different phases are given in
(a). The inset provides percolation and cmc lines to higher T. Three triple points can be identified (solid squares): (i) fluid-fcc-cluster-
cylindrical coexistence at T ¼ 0.410ð5Þ and p ¼ 0.051ð1Þ, (ii) fluid-cylindrical-lamellar coexistence at T ¼ 0.491ð4Þ and
p ¼ 0.285ð2Þ, and (iii) cylindrical-double gyroid-lamellar coexistence at T ¼ 0.37ð1Þ and p ¼ 0.15ð1Þ.
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system gel-like. This multi-time-scale dynamics, in par-
ticular, the sluggish relaxation of network nodes, may
contribute to the difficulty of assembling microphases in
colloids [25,26]. Note that other mechanisms slowing
down the dynamics could also emerge below TODT,
including competingmicrophasemorphologies [30–32] and
spinodal-like arrest [27–29], but a systematic study of these
nonequilibrium effects is left for future consideration.
Conclusion.—We have developed a TI-based simulation

method for solving the phase diagram of arbitrary con-
tinuous-space microphase-forming models. Our solution of
the prototypical SWL model presents the periodic micro-
phase sequence—cluster crystal, cylindrical, double
gyroid, and lamellar phases—of systems described by a
comparable Landau functional [17]. Our search for ordered
phases, however, was not exhaustive; hence, other stable
morphologies are possible. More importantly, we have
clarified the thermodynamic interplay between fluids of
spherical and wormlike clusters, the equilibrium percolat-
ing fluid (gel-like), and periodic microphases. This dis-
tinction is essential for separating equilibrium from
nonequilibrium effects in the dynamical arrest of micro-
phase formers [17,25,27,29]. It is also essential for guiding

experiments with SALR-like colloidal interactions, whose
precise form can vary with system density [68]. Indeed,
colloidal experiments have thus far identified only equi-
librium cluster fluids and gels [18–21,40]. Whether the
challenge of assembling ordered microphases in colloids
could be surmounted by tuning the properties of these
disordered regimes or by identifying alternate assembly
pathways remains, however, an open question.
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Del Gado, D. Frenkel, P. Royall, and S. Yaida. We
acknowledge support from the National Science
Foundation Grant No. NSF DMR-1055586.
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